PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Motion representations for the Lafferriere-Sussmann algorithm for nilpotent control systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an extension of the Lafferriere-Sussmann algorithm of motion planning for driftless nilpotent control systems is analyzed. It is aimed at making more numerous admissible representations of motion in the algorithm. The representations allow designing a shape of trajectories joining the initial and final configuration of the motion planning task. This feature is especially important in motion planning in a cluttered environment. Some natural functions are introduced to measure the shape of a trajectory in the configuration space and to evaluate trajectories corresponding to different representations of motion.
Rocznik
Strony
525--534
Opis fizyczny
Bibliogr. 21 poz., tab., wykr.
Twórcy
autor
  • Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland, ignacy.duleba@pwr.wroc.pl
Bibliografia
  • [1] Bellaiche, A., Laumond, J.-P. and Chyba, M. (1993). Canonical nilpotent approximation of control systems: Application to nonholonomic motion planning, IEEE Conference on Decision and Control, San Antonio, TX, USA, pp. 2694-2699.
  • [2] Chow, W. L. (1939). On system of linear partial differential equations of the first order, Mathematische Annalen 117(1): 98-105, (in German).
  • [3] Dulęba, I. (1998). Algorithms of Motion Planning for Nonholonomic Robots, Wrocław University of Technology Publishing House, Wrocław.
  • [4] Dulęba, I. (2009). How many P. Hall representations there are for motion planning of nilpotent nonholonomic systems?, IFAC International Conference on Methods and Models in Automation and Robotics, Mi˛edzyzdroje, Poland.
  • [5] Dulęba, I. and Jagodziński, J. (2008a). On impact of reference trajectory on Lafferierre-Sussmann algorithm applied to the Brockett integrator system, in K. Tchoń and C. Zieliński (Eds.), Problems of Robotics, Science Works: Electronics, Vol. 166, Warsaw University of Technology Publishing House, Warsaw, pp. 515-524, (in Polish).
  • [6] Dulęba, I. and Jagodziński, J. (2008b). On the structure of Chen-Fliess-Sussmann equation for Ph. Hall motion representation, in K. Tchoń (Ed.), Progress in Robotics, Wydawnictwa Komunikacji i Łączności, Warsaw, pp. 9-20.
  • [7] Dulęba, I. and Jagodziński, J. (2009). Computational algebra support for the Chen-Fliess-Sussmann differential equation, in K. Kozłowski (Ed.), Robot Motion and Control, Lecture Notes in Control and Information Sciences, Vol. 396, Springer, Berlin/Heidelberg, pp. 133-142.
  • [8] Dulęba, I. and Khefifi, W. (2006). Pre-control form of the generalized Campbell-Baker-Hausdorff-Dynkin formula for affine nonholonomic systems, Systems and Control Letters 55(2): 146-157.
  • [9] Golub, G. H. and Loan, C. V. (1996). Matrix Computations, 3rd Edn., The Johns Hopkins University Press, London.
  • [10] Koussoulas, N. and Skiadas, P. (2001). Motion planning for drift-free nonholonomic system under a discrete levels control constraint, Journal of Intelligent and Robotic Systems 32(1): 55-74.
  • [11] Koussoulas, N. and Skiadas, P. (2004). Symbolic computation for mobile robot path planning, Journal of Symbolic Computation 37(6): 761-775.
  • [12] Lafferriere, G. (1991). A general strategy for computing steering controls of systems without drift, IEEE Conference on Decision and Control, Brighton, UK, pp. 1115-1120.
  • [13] Lafferriere, G. and Sussmann, H. (1990). Motion planning for controllable systems without drift: A preliminary report, Technical report, Rutgers Center for System and Control, Piscataway, NJ.
  • [14] Lafferriere, G. and Sussmann, H. (1991). Motion planning for controllable systems without drift, IEEE Conference on Robotics and Automation, Brighton, UK, pp. 1148-1153.
  • [15] LaValle, S. (2006). Planning Algorithms, Cambridge University Press, Cambrigde, MA.
  • [16] Reutenauer, C. (1993). Free Lie Algebras, Clarendon Press, Oxford.
  • [17] Rouchon, P. (2001). Motion planning, equivalence, infinite dimensional systems, International Journal of Applied Mathematics and Computer Science 11(1): 165-188.
  • [18] Strichartz, R. S. (1987). The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, Journal of Functional Analysis 72(2): 320-345.
  • [19] Struemper, H. (1998). Nilpotent approximation and nilpotentization for under-actuated systems on matrix Lie groups, IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 4188-4193.
  • [20] Sussmann, H. (1991). Two new methods for motion planning for controllable systems without drift, European Control Conference, Grenoble, France, pp. 1501-1506.
  • [21] Vendittelli, M., Oriolo, G., Jean, F. and Laumond, J.-P. (2004). Nonhomogeneous nilpotent approximations for nonholonomic system with singularities, IEEE Transactions on Automatic Control 49(2): 261-266.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0073-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.