PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, research concerning application of electroconducting polymers in biosensors is discussed. Selection of the electropolymers has been limited to those which monomers are water-soluble, such as: polypyrrole and polyaniline. In general, experiments concerning EP utilization in dehydrogenase based biosensors were divided in four stages: (I) incorporation of mediators as dopants of the EP's layer, (2) immobilization of cofactors e.g. NAD+/NADH, (3) immobilization of enzymes and (4) immobilization of all components: mediator, cofactor and enzyme. As a dopant of the PPy water-soluble electroactive compound ferrocyanide was used. Another EP, namely polyaniline was also tested as an electrode material for NADH detection based on its electrochemical oxidation. In the case of simultaneous immobilization of mediator, NAD, and ADH in the PPy layer, as a result of the ethanol oxidation, the oxidation peaks of the mediator become smaller whereas the oxidation peaks of PPy increase. In the analyzed EtOH concentration range (O - 2 mM), slope of calibration curve for the PPy oxidation peak was around 20 \miA/mM. In the case of PAn deposition on the platinum electrode, decrease of the oxidation potential for NADH by 0.4 V was observed.
Twórcy
autor
  • Nałęcz Institute of Biocybenetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland, dpijanowska@ibib.waw.pl
Bibliografia
  • 1. Shirakawa H., Louis E. J., MacDiarmid A. G., Chiang C. K., Heeger A. J.: Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene (CH)x. J. Chem. Soc. Chem. Comm. 1977, 474, 578-580.
  • 2. MacDiarmid A. G.: Synthetic metals: a novel role for organic polymers. Synthetic Metals 2002, 125, 11-22.
  • 3. Kahol P. K., Ho J. C., Chen Y. Y., Wang C. R., Neeleshwar S, Tsai C. B., Wessling B.: On metallic characteristics in some conducting polymers. Synthetic Metals 2005, 151, 65-72.
  • 4. Okutan M., Yerli Y., San S. E., Yılmaz F., Günaydın O., Durak M.: Dielectric properties of thiophene based conducting polymers. Synthetic Metals 2007, 157, 368-373.
  • 5. Brazovski S., Kirova N.: Optics of polymers in the light of solid state physics. Synthetic Metals 2002, 125, 129-138.
  • 6. Yang S., Olishevski P., Kertesz M.: Bandgap calculations for conjugated polymers. Synthetic Metals 2004, 141, 171-177.
  • 7. Atwani O., Baristiran C., Erden A., Sonmez G.: A stable, low band gap electroactive polymer: Poly(4,7-dithien-2-yl-2,1,3-benzothiadiazole). Synthetic Metals 2008, 158, 83-89.
  • 8. Karl N.: Charge carrier transport in organic semiconductors. Synthetic Metals 2003, 133-134, 649-657.
  • 9. Li L., Meller G., Kosina H.: Carrier concentration dependence of the mobility in organic semiconductors. Synthetic Metals 2007, 157, 243-246.
  • 10. Hide F., Schwartz B. J., Diaz-Garcia M. A., Heeger A. J.: Conjugated polymers as solid-state laser materials. Synthetic Metals 1997, 91, 35-40.
  • 11. Kirova N.: Electronic correlations and excitons in conducting polymers. Synthetic Metals 2005, 152, 313-316.
  • 12. Vidal J. C., Garcia-Ruiz E., Castillo J. R.: Recent Advances in Electropolymerized Conducting Polymers in Amperometric Biosensors. Microchim. Acta 2003, 143, 93-111.
  • 13. Ahuja T., Mir I. A., Kumar D.: Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 2007, 28, 791-805.
  • 14. Guimard N. K., Gomez N., Schmidt Ch. E.: Conducting polymers in biomedical engineering, Prog. Polym. Sci. 2007, 32, 876-921.
  • 15. Prabhakar N., Arora K., Singh S. P., Singh H., Malhotra B. D.: DNA entrapped polypyrrole-polyvinyl sulfonate film for application to electrochemical biosensor. Anal. Biochemistry 2007, 366, 71-79.
  • 16. Carquigny S., Segut O., Lakard B., Lallemand F., Fievet P., Effect of electrolyte solvent on the morphology of polypyrrole films: Application to the use of polypyrrole in pH sensors. Synthetic Metals, 158, 2008, 453-461.
  • 17. Lange U., Roznyatovskaya N. V., Mirsky V. M.: Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 2008, 614, 1-26.
  • 18. Rajesh, Ahuja T., Kumar D.: Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensors and Actuators B 2009, 136, 275-286.
  • 19. Yang S. M., Chen K. H., Yang Y. F.: Synthesis of polyaniline nanotubes in the channel of anodic alumina membrane. Synthetic Metals 2005, 152, 65-68.
  • 20. Otero T. F., Cascales J .J. L., Arenas G. V.: Mechanical characterization of free-standing polypyrrole film. Materials Science. Eng. C 2007, 27, 18-22.
  • 21. Pytel R. Z., Thomas E. L., Hunter I. W.: In situ observation of dynamic elastic modulus in polypyrrole actuators. Polymer 2008, 49, 2008-2013.
  • 22. Adhikari B., Majumdar S.: Polymers in sensor applications. Prog. Polym. Sci. 2004, 29, 699-766.
  • 23. Schultze J. W., Karabulut H.: Application potential of conducting polymers. Electrochimica Acta 2005, 50, 1739-1745.
  • 24. Mortimer R. J., Dyer A. L., Reynolds J. R.: Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2-18.
  • 25. Johnston J. H., Kelly F. M, Moraes J., Borrmann T., Flynn D.: Conducting polymer composites with cellulose and protein fibres. Current Appl. Physics 2006, 6, 587-590.
  • 26. Katragadda R. B., Xu Y.: A novel intelligent textile technology based on silicon flexible skins. Sensors and Actuators A 2008, 143, 169-174.
  • 27. Mannerbro R., Ranlöf M., Robinson N., Forchheimer R.: Inkjet printed electrochemical organic electronics. Synthetic Metals 2008, 158, 556-560.
  • 28. Gerard M., Chaubey A., Malhotra B. D.: Application of conducting polymers to biosensors. Biosens. Bioelectronics 2002, 17, 345-359.
  • 29. Cosnier S.: Biosensors based on electropolymerized films: new trends. Anal. Bioanal. Chem. 2003, 377, 507-520.
  • 30. Gerard M., Malhotra B. D.: Application of polyaniline as enzyme based biosensor. Current Appl. Physics 2005, 5, 174-177.
  • 31. Geetha S., Rao C. R. K., Vijayan M., Trivedi D. C.: Biosensing and drug delivery by polypyrrole. Anal. Chim. Acta 2006, 568, 119-125.
  • 32. Malhotra B. D., Chaubey A., Singh S. P.: Prospects of conducting polymers in biosensors. Anal. Chim. Acta 2006, 578, 59-74.
  • 33. Teles F. R. R., Fonseca L. P.: Applications of polymers for biomolecule immobilization in electrochemical biosensors. Materials Science. Eng. C 2008, 1530-1543.
  • 34. Chaubey A., Malhotra B. D.: Mediated biosensors. Biosens. Bioelectronics 2002, 17, 441-456.
  • 35. Prieto-Simón B., Fàbregas E.: Comparative study of electron mediators used in the electrochemical oxidation of NADH. Biosens. Bioelectronics 2004, 19, 1131-1138.
  • 36. Radoi A, Compagnone D.: Recent advances in NADH electrochemical sensing design. Bioelectrochemistry 2009, 76, 126-134.
  • 37. Gligor D., Dilgin Y., Popescu I. C., Gorton L.: Poly-phenothiazine derivative-modified glassy carbon electrode for NADH electrocatalytic oxidation. Electrochimica Acta 2009, 54, 3124-3128.
  • 38. Lobo M. J., Miranda A. J., Tuñón P.: Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes. Review, Electroanalysis 1997, 9/3,191-202.
  • 39. Bartlett P. N., Simon E., Toh C. S.: Modified electrodes for NADH oxidation and dehydrogenase-based biosensors. Bioelectrochemistry 2002, 56, 117-122.
  • 40. Moiroux J., Elving P. J.: Optimization of the analytical oxidation of dihydronicotinamide adenine dinucleotide at carbon and platinum electrodes. Anal. Chem. 1979, 51/3, 346-350.
  • 41. Wring S. A., Hart J. P.: Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds. Analyst 1992, 117, 1215-1229.
  • 42. Balamurugan A., Chen S. M.: Voltammetric oxidation of NADH at phenyl azo aniline/PEDOT modified electrode. Sensors and Actuators B 2008, 129, 850-858.
  • 43. Zhou D. M., Fang H. Q., Chen H. Y., Ju H. X., Wang Y.: The electrochemical polymerization of methylene green and its electrocatalysis for the oxidation of NADH. Anal. Chim. Acta 1996, 329, 41-48.
  • 44. Katakis I., Dominguez E.: Catalytic electrooxidation of NADH for dehydrogenase amperometric biosensors. Microchim. Acta 1997, 126, 11-32.
  • 45. Wallace G. G., Spinks G. M. and Teasdale P. R.: Conductive electroactive polymers. Technomic Publishing Comp., Lancaster, 1997.
  • 46. Cosnier S., Gondran C., Senillou A.: Functionalized polypyrroles: a sophisticated glue for the immobilization and electrical wiring of enzymes. Synthetic Metals 1999, 102, 1366-1369.
  • 47. Oshima K., Nakamura T., Matsuoka R., Kuwahara T., Shimomura M., Miyauchi S.: Immobilization of alcohol dehydrogenase on poly[1-(2-carboxyethyl)pyrrole] film for fabrication of ethanol-responding electrode. Synthetic Metals 2005, 152, 33-36.
  • 48. Chen S. M., Liu M. I., Kumar S. A.: Electrochemical preparation of poly(acriflavine) film-modified electrode and its electrolcatalytic properties towards NADH nitrite and sulfur oxoanions. Electroanalysis 2007, 19, 999-1007.
  • 49. Kossakowska A., Pijanowska D. G., Kruk J., Torbicz W.: Ferricyanide as an electron mediator in electroconducting polpyrrole layers. Polish J. Chemistry 2008, 82, 1273-1281.
  • 50. Zhai X., Wei W., Zeng J., Gong S., Yin J.: Layer-by-layer assembled film based on chitosan/carbon nanotubes and its application to electrocatalytic oxidation of NADH. Microchim. Acta 2006, 154, 315-320.
  • 51. Balamurugan A., Ho K. C., Chen S. M., Huang T. Y.: Electrochemical sensing of NADH based on Meldola Blue immobilized silver nanoparticle-conducting polymer electrode. Colloids and Surfaces A: Physicochem. Eng. Aspects 2010, 362, 1-7.
  • 52. Kossakowska A., Kruk J., Pijanowska D. G., Torbicz W.: Electropolymerization of methylene green on gold and platinum electrodes for quantitative ascorbic acid determination. Sensor Letters 2010, 8/5, 713-719.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0073-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.