PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon nanotubes chemically derivatized with redox systems as mediators for biofuel cell applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was designing of nanostructured bioelectrodes and assembling them into a biofuel cell with no separating membrane. Carbon nanotubes (CNTs) chemically connected with residues of typical mediators, i.e. ferrocene (Fc) and 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) deposited on glassy carbon electrodes (GCE) were found useful as mediators for the enzyme catalyzed electrode processes. The electrodes were in turn covered with glucose oxidase from Aspergillus niger AM-11 and laccase from Cerrena unicolor C-139, respectively, incorporated in a liquid-crystalline matrix. The nanostructured electrode coating with the cubic phase film containing enzymes acted as the catalytic surface for the enzymatic reactions that is oxidation of glucose at anode and reduction of oxygen at cathode. For the system with mediators anchored to CNTs the catalysis was almost ten times more efficient than on bare GCE electrodes: catalytic current of glucose oxidation was 1 mAcm-2 and oxygen reduction current exceeded 0.6 mAcm-2. The open circuit voltage of the biofuel cell was 0.43 V. Application of the carbon nanotubes increased maximum power output of the constructed biofuel cell to 100 \miWcm-2 without stirring the solution. It is ca. 100 times more efficient than using the same bioelectrodes without nanotubes on the electrode surface.
Twórcy
autor
autor
autor
autor
  • Chemical Faculty, Gdańsk University of Technology, Narutowicza Str. 11-12, 80-233 Gdańsk, Poland, biernat@chem.pg.gda.pl
Bibliografia
  • 1. Barton S. C., Gallway J., Atanassov P.: Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 2004, 104, 4867-4886.
  • 2. Heller A.: Miniature biofuel cells, Phys. Chem. Chem. Phys. 2004, 6, 209-216.
  • 3. Arechederra R. L., Treu B. L., Minteer S. D.: Development of Glycerol/Oxygen Biofuel Cells. J. Power Sources, 2007, 173, 156-161.
  • 4. Willner I., Yan Y. M., Willner B., Tel-Vered R.: Integrated Enzyme-Based Biofuel Cells-A Review, Fuel Cells 2009, 9, 7-24.
  • 5. Stoica L., Dimcheva N., Ackerman Y., Karnicka K., Guschin D. A., Kulesza P. J., Rogalski J., Haltrich D., Ludwig R., Gorton L., Schuhmann W.: Membrane-less biofuel cell based on cellobiose dehydrogenase (anode)/laccase (cathode) wired via specific Os-redox polymers. Fuel Cells 2009, 9, 53-62.
  • 6. Kontani R., Tsujimura S., Kano K.: Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes. Bioelectrochemistry 2009, 76, 10-13.
  • 7. Vincent K. A., Cracknell J. A,, Lenz O., Zebger I., Friedrich B., Armstrong F. A.: Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. Proc. Natl. Acad. Sci. USA 2005, 102, 16951-16954.
  • 8. Ivanov I., Vidacovic-Koch T., Sundmacher K.: Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling. Energies 2010, 3, 803-846.
  • 9. Kamitaka Y., Tsujimura S., Setoyama N., Kajino T., Kano K.: Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys. Chem. Chem. Phys. 2007, 9, 1793-1801.
  • 10. Coman V., Vaz-Dominguez C., Ludwig R., Harreither W., Haltrich D., de Lacey A.L., Ruzgas T., Gorton L., Shleev S.: A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell. Phys. Chem. Chem. Phys. 2008, 10, 6093-6096.
  • 11. Coman V., Ludwig R., Harreither W., Haltrich D., Gorton L., Ruzgas T., Shleev S.: A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum. Fuel Cells 2010, 10, 9-16.
  • 12. Ivnitski D., Artyushkova K., Rincon R. A., Atanassov P., Luckarift H. R., Johnson G. R.: Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer. Small 2008, 4, 357-364.
  • 13. Lyons M. E. G., Keeley G. P.: Immobilized enzyme-single-wall carbon nanotube composites for amperometric glucose detection at a very low applied potential. Chem. Commun. 2008, 22, 2529-2531.
  • 14. Zhou Y., Yang H., Chen H. Y.: Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes. Talanta 2008, 76, 419-423.
  • 15. Deng L., Shang L., Wang Y., Wang T., Chen H., Dong S.: Multilayer structured carbon nanotubes/poly-L-lysine/laccase composite cathode for glucose/O-2 biofuel cell. Electrochem. Commun. 2008, 10, 1012-1015.
  • 16. Zheng W., Zhou H. M., Zheng Y. F., Wang N.: A comparative study on electrochemistry of laccase at two kinds of carbon nanotubes and its application for biofuel cell. Chem. Phys. Lett. 2008, 457, 381-385.
  • 17. Gallaway J., Wheeldon I., Rincon R., Atanassov P., Banta S., Barton S. C.: Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Biosens. Bioelectron. 2008, 23, 1229-1235.
  • 18. Yan Y. M., Yehezkeli O., Willner I.: Integrated, electrically contacted NAD(P)(+)-dependent enzyme - carbon nanotube electrodes for biosensors and biofuel cell applications. Chem. Eur. J. 2007, 13, 10168-10175.
  • 19. Karnicka K., Miecznikowski K., Kowalewska B., Skunik M., Opallo M., Rogalski J., Schumann W., Kulesza P. J.: ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen. Anal. Chem. 2008, 80(19), 7643-7648.
  • 20. Jönsson M., Szot K., Niedziolka J., Rogalski J., Karnicka K., Kulesza P., Opallo M.: Adsorption of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) on multiwalled carbon nanotubes - silicate film: application to bioelectrocatalytic dioxygen reduction. J. Nanos. Nanotech. 2009, 9, 2346-2352.
  • 21. Hirsch A.: Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853-1859.
  • 22. Nazaruk E., Michota A., Bukowska J., Shleev S., Gorton L., Bilewicz R.: Properties of native and hydrophobic laccases immobilized in the liquid-crystalline cubic phase on electrodes, J. Biol. Inorg. Chem. 2007, 12, 335-344.
  • 23. Nazaruk E., Bilewicz R.: Catalytic activity of oxidases hosted in lipidic cubic phases on electrodes. Bioelectrochemistry 2007, 71, 8-14.
  • 24. Rowinski P., Bilewicz R., Stébé M. J., Rogalska E.: Electrodes modified with monoolein cubic phases hosting laccases for the catalytic reduction of dioxygen. Anal. Chem. 2004, 76, 283-291.
  • 25. Rowinski P., Bilewicz R.: Carbon dioxide electrochemical sensor based on lipid cubic phases containing macrocyclic Ni(II) complexes. Mat. Sci. Eng. C 2001, 18, 177-183.
  • 26. Bilewicz R., Rowinski P., Rogalska E.: Modified electrodes based on lipidic cubic phases. Bioelectrochemistry 2005, 66, 3-8.
  • 27. Sadowska K., Stolarczyk K., Biernat J. F., Rogalski J., Bilewicz R.: Carbon nanotubes chemically derivatized with redox systems as mediators for implantable biofuel cells. Bioelectrochem. 2010, 80, 73-80.
  • 28. Nazaruk E., Sadowska K., Biernat J. F., Rogalski J., Ginalska G., Bilewicz R.: Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications. Anal. Bioanal. Chem. 2010, 398, 1651-1660.
  • 29. Fiedurek J., Gromada A.: Screening and mutagenesis of molds for improvement of the simultaneous production of catalase and glucose oxidase. Enzyme Microb. Technol. 1997, 20, 344-347.
  • 30. Janusz G.: Comparative analysis of fungi laccases, Ph.D. Thesis, UMCS, Lublin, 2005, 222.
  • 31. Leonowicz A., Grzywnowicz K.: Quantitative estimation of laccase forms in some white-rot-fungi using syringaldazine as a substrate. Enzyme Microb. Technol. 1981, 3, 55-58.
  • 32. Sadowska K., Roberts K. P., Wiser R., Biernat J. F., Jabłonowska E., Bilewicz R.: Synthesis, characterization, and electrochemical testing of carbon nanotubes derivatized with azobenzene and anthraquinone. Carbon 2009, 47(6), 1501-1510.
  • 33. Zhang J., Zou H., Qing Q., Yang Y., Li Q., Liu Z., Guo X., Du Z.: Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B., 2003, 107, 3712-3718.
  • 34. Peng H., Reverdy P., Khabashesku V. N., Margrave J. L.: Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. Chem. Commun. 2003, 9, 362-363.
  • 35. Khabashesku V. N.: Method for functionalizing carbon nanotubes utilizing peroxides, US patent 7125533 (2006) B2.
  • 36. Nazaruk E., Sadowska K., Madrak K., Biernat J. F., Rogalski J., Bilewicz R.: Composite bioelectrodes based on lipidic cubic phase with carbon nanotube network. Electroanalysis 2009, 21, 507-511.
  • 37. Tsujimura S., Tatsumi H., Ogawa J., Shimizu S., Kano K., Ikeda T.: Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2'-azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator. J. Electroanal. Chem. 2001, 496, 69-75.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0073-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.