PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Depth recordings from human subcortical structures have improved our knowledge of human brain circuitries and provided better understanding of the effects and mechanism of action of deep brain stimulation. Two types of signals can be recorded: single unit spikes and local field potentials (LFP). The basal ganglia (BG) are particularly well suited for deep brain recordings and here we review how the oscillatory activities recorded in these structures helped improve our understanding of the sensorimotor brain functions in particular, along with cognitive and emotional-motivational. The oscillations may be classified by frequency into bands at < 8, 8-30 and> 60 Hz. The best characterized band is the 8-30 Hz and existing evidence suggests that it is antikinetic and inversely related to motor processing. On the other hand, accumulating evidence suggests that the > 60 Hz band may be related to normal function.
Twórcy
autor
autor
Bibliografia
  • 1. Benabid A., Pollak P., Gervason C., Hoffmann D., Gao D. M., Hommel M. et al.: Longterm suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 1991, 337, 403-406.
  • 2. Benabid A. L., Pollak P., Louveau A., Henry S., de Rougemont J.: Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamus nucleus for bilateral Parkinson Disease. Stereotact. Funct. Neurosurg. 1987, 50, 344-346.
  • 3. Chang J. Y.: Brain stimulation for neurological and psychiatric disorders, current status and future direction. J. Pharmacol. Exp. Ther. 2004, 309, 1-7.
  • 4. Mayberg H. S., Lozano A. M., Voon V., McNeely H. E., Seminowicz D., Hamani C., Schwalb J. M., Kennedy S. H.: Deep brain stimulation for treatment-resistant depression. Neuron. 2005, Mar 3, 45(5), 651-660.
  • 5. Brown P., Marsden C. D.: What do the basal ganglia do? Lancet. 1998 Jun 13, 351(9118), 1801-1804.
  • 6. Graybiel A. M.: The basal ganglia and the initiation of movement. Rev. Neurol. (Paris) 1990, 146(10), 570-574.
  • 7. Jahanshahi M., Jenkins I. H., Brown R. G., Marsden C. D., Passingham R. E., Brooks D. J.: Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain 1995 Aug 118 ( Pt 4), 913-933.
  • 8. Marsden C. D., Obeso J. A.: The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain 1994, 117, 877-897.
  • 9. Mink J. W.: The Basal Ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch. Neurol. 2003, 60, 1365-1368.
  • 10. Hutchison W. D., Allan R. J., Opitz H., Levy R., Dostrovsky J. O., Lang A. E., Lozano A. M.: Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Ann. Neurol. 1998 Oct, 44(4), 622-628.
  • 11. Lozano A., Hutchison W., Kiss Z., Tasker R., Davis K., Dostrovsky J.: Methods for microelectrode-guided posteroventral pallidotomy. J. Neurosurg. 1996 Feb, 84(2), 194-202.
  • 12. Hahn P. J., Russo G. S., Hashimoto T., Miocinovic S., Xu W., McIntyre C. C., Vitek J. L.: Pallidal burst activity during therapeutic deep brain stimulation. Exp. Neurol. 2008 May, 211(1), 243-251. Epub 2008 Feb 20.
  • 13. Joshua M., Elias S., Levine O., Bergman H.: Quantifying the isolation quality of extracellularly recorded action potentials. J. Neurosci. Methods. 2007 Jul 30, 163(2), 267-282. Epub 2007 Mar 24.
  • 14. Boraud T., Bezard E., Bioulac B., Gross C. E.: From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Prog. Neurobiol. 2002 Ma, 66(4), 265-283.
  • 15. DeLong M. R.: Primate models of movement disorders of basalganglia origin. Trend Neurosci. 1990, 13, 281-285.
  • 16. Bevan M. D., Magill P. J., Terman D., Bolam J. P., Wilson C. J.: Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 2002, 25, 525-531.
  • 17. Levy R., Dostrovsky J. O., Lang A. E., Sime E., Hutchison W. D., Lozano A. M.: Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease. J. Neurophysiol. 2001, 86, 249-260.
  • 18. Brown P., Williams D.: Basal ganglia local field potential activity: Character and functional significance in the human. Clin. Neurophysiol. 2005, 116, 2510-2519.
  • 19. Brown P.: Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease. Mov. Disord. 2003, 18, 357-363.
  • 20. Buzsaki G., Draguhn A.: Neuronal oscillations in cortical networks. Science 2004, 304, 1926-1929.
  • 21. Creutzfeldt O. D., Watanabe S., Lux H. D.: Relations between EEG phenomena and potentials of single cortical cells. I.Evoked responses after thalamic and erpicortical stimulation. Electroencephalogr. Clin. Neurophysiol. 1966 Jan, 20(1), 1-18.
  • 22. Mitzdorf U.: Current source-density method and application in cat cerebral cortex:investigation of evoked potentials and EEG phenomena. Physiol. Rev. 1985 Jan, 65(1), 37-100.
  • 23. Rafols J. A., Fox C. A.: The neurons in the primate subthalamic nucleus: a Golgi and electron microscopic study. J. Comp. Neurol. 1976 Jul, 1, 168(1), 75-111.
  • 24. Hammond C, Yelnik J. Intracellular labelling of rat subthalamic neurones with horseradish peroxidase: computer analysis of dendrites and characterization of axon arborization. Neuroscience 1983 Apr 8(4): 781-790.
  • 25. Kita H., Chang H. T., Kitai S. T.: The morphology of intracellularly labeled rat subthalamic neurons: a light microscopic analysis. J. Comp. Neurol. 1983 Apr 10, 215(3), 245-257.
  • 26. Yelnik J., Percheron G., François C.: A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations. J. Comp. Neurol. 1984 Aug 1, 227(2), 200-213.
  • 27. Courtemanche R., Fujii N., Graybiel A. M.: Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J. Neurosci. 2003 Dec., 17, 23(37), 11741-11752.
  • 28. Levy R., Hutchison W. D., Lozano A. M., Dostrovsky J. O.: Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J. Neurosci. 2002 Apr, 1, 22(7), 2855-2861.
  • 29. Goto Y., O'Donnell P.: Network synchrony in the nucleus accumbens in vivo. J. Neurosci. 2001 Jun 15, 21(12), 4498-4504.
  • 30. Magill P. J., Sharott A., Bevan M. D., Brown P., Bolam J. P.: Synchronous unit activity and local field potentials evoked in the subthalamic nucleus by cortical stimulation. J. Neurophysiol. 2004a Aug 92(2), 700-714. Epub 2004 Mar 24.
  • 31. Magill P. J., Sharott A., Bolam J. P., Brown P.: Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat. J. Neurophysiol. 2004b Oct, 92(4), 2122-2136, Epub 2004 Jun 2.
  • 32. Brown P., Oliviero A., Mazzone P., Insola A., Tonali P., Di Lazzaro V.: Dopamine Dependency of Oscillations between Subthalamic Nucleus and Pallidum in Parkinson's Disease. J. Neurosci. 2001, 21, 1033-1038.
  • 33. Fogelson, N., Williams, D., Tijssen, M., van Bruggen, G., Speelman, H., Brown, P.: Different functional loops between cerebral cortex and the subthalamic area in Parkinson's disease. Cereb. Cortex, 2005, 16, 64-75.
  • 34. Kühn A. A., Trottenberg T., Kivi A., Kupsch A., Schneider G. H., Brown P.: The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson's disease. Exp. Neurol. 2005 Jul, 194(1), 212-220.
  • 35. Monakow K. H., Akert K., Kqnzle H.: Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp. Brain Res. 1978, 33, 395- 403.
  • 36. Nambu A., Takada M., Inase M., Tokuno H.: Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J. Neurosci. 1996, 16, 2671-2683.
  • 37. Nambu A., Tokuno H., Inase M., Takada M.: Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci. Lett. 1997, 239, 13-16.
  • 38. DeLong M. R., Crutcher M. D., Georgopoulos A. P.: Primate globus pallidus and subthalamic nucleus: functional organization. J. Neurophysiol. 1985, 53, 530-543.
  • 39. Rodriguez-Oroz M. C., Rodriguez M., Guridi J., Mewes K., Chockkman V., Vitek J., DeLong M.R., Obeso J. A.: The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics. Brain 2001 Sep, 124(Pt 9), 1777-1790.
  • 40. Parent A., Hazrati L. N.: Functional anatomy of the basal ganglia: II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res. Rev. 1995, 20, 128-154.
  • 41. Uhlhaas P. J., Singer W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006 Oct, 5, 52(1), 155-168.
  • 42. Cassidy M., Mazzone P., Oliviero A., Insola A., Tonali P., Di Lazzaro V., Brown P.: Movement-related changes in synchronization in the human basal ganglia. Brain 2002 Jun, 125(Pt 6), 1235-1246.
  • 43. Priori A., Foffani G., Pesenti A., Bianchi A., Chiesa V., Baselli G., Caputo E., Tamma F., Rampini P., Egidi M., Locatelli M., Barbieri S., Scarlato G.: Movement-related modulation of neural activity in human basal ganglia and its L-DOPA dependency: recordings from deep brain stimulation electrodes in patients with Parkinson's disease. Neurol. Sci. 2002 Sep, 23 Suppl., 2, S101-S102.
  • 44. Eusebio A., Brown P.: Oscillatory activity in the basal ganglia. Parkinsonism Relat. Disord. 2007, 13 Suppl., 3, S434-S436.
  • 45. Williams D., Kühn A., Kupsch A., Tijssen M., van Bruggen G., Speelman H., Hotton G., Yarrow K., Brown P.: Behavioural cues are associated with modulations of synchronous oscillations in the human subthalamic nucleus. Brain 2003 Sep. 126(Pt 9), 1975-1985. Epub 2003 Jul 7.
  • 46. Williams Z. M., Neimat J. S., Cosgrove G. R., Eskandar E. N.: Timing and direction selectivity of subthalamic and pallidal neurons in patients with Parkinson disease. Exp. Brain Res. 2005 May, 162(4), 407-416, Epub 2005 Jan 6.
  • 47. Priori A., Foffani G., Pesenti A., Tamma F., Bianchi A.M., Pellegrini M., Locatelli M., Moxon K.A., Villani R. M.: Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson's disease. Exp. Neurol. 2004 Oct, 189(2), 369-379.
  • 48. Foffani G., Bianchi A. M., Baselli G., Priori A.: Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus. J. Physiol. 2005 Oct., 15, 568(Pt 2), 699-711, Epub 2005 Aug 25.
  • 49. Marceglia S., Foffani G., Bianchi A. M., Baselli G., Tamma F., Egidi M., Priori A.: Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease. J. Physiol. 2006 Mar, 15, 571(Pt 3), 579-591, Epub 2006 Jan 12.
  • 50. Marceglia S., Fiorio M., Foffani G., Mrakic-Sposta S., Tiriticco M., Locatelli M., Caputo E., Tinazzi M., Priori A.: Modulation of beta oscillations in the subthalamic area during action observation in Parkinson's disease. Neuroscience 2009 Jul 21, 161(4), 1027-1036, Epub 2009 Apr 11.
  • 51. Brodkey J. A., Tasker R. R., Hamani C., McAndrews M. P., Dostrovsky J. O., Lozano A. M.: Tremor cells in the human thalamus: differences among neurological disorders. J. Neurosurg. 2004 Jul, 101(1), 43-47.
  • 52. Hurtado J. M., Gray C. M., Tamas L. B., Sigvardt K. A.: Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc. Natl. Acad. Sci. U S A. 1999 Feb 16, 96(4), 1674-1679.
  • 53. Raethjen J., Lindemann M., Schmaljohann H., Wenzelburger R., Pfister G, Deuschl G.: Multiple oscillators are causing parkinsonian and essential tremor. Mov. Disord. 2000 Jan, 15(1), 84-94.
  • 54. Stein J. F., Aziz T. Z.: Does imbalance between basal ganglia and cerebellar outputs cause movement disorders? Curr. Opin. Neurol. 1999 Dec., 12(6), 667-669.
  • 55. Reck C., Florin E., Wojtecki L., Krause H., Groiss S., Voges J., Maarouf M., Sturm V., Schnitzler A., Timmermann L.: Characterisation of tremor-associated local field potentials in the subthalamic nucleus in Parkinson's disease. Eur. J. Neurosci. 2009 Feb., 29(3), 599-612. Epub 2009 Jan 28.
  • 56. Trottenberg T., Fogelson N., Kühn A. A., Kivi A., Kupsch A., Schneider G. H., Brown P.: Subthalamic gamma activity in patients with Parkinson's disease. Exp. Neurol. 2006, 200, 56-65.
  • 57. Androulidakis A. G., Brücke C., Kempf F., Kupsch A., Aziz T., Ashkan K., Kühn A. A., Brown P.: Amplitude modulation of oscillatory activity in the subthalamic nucleus during movement. Eur. J. Neurosci. 2008 Mär, 7(5), 1277-1284. Epub 2008 Feb 29.
  • 58. Gross D. W., Gotman J.: Correlation of high-frequency oscillations with the sleep-wake cycle and cognitive activity in humans. Neuroscience 1999, 94, 1005-1018.
  • 59. Alonso-Frech F., Zamarbide I., Alegre M., Rodrı'guez-Oroz M. C., Guridi J., Manrique M., Valencia M., Artieda J., Obeso J. A.: Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson's disease. Brain 2006, 129, 1748-1757.
  • 60. Kempf F., Kühn A. A., Kupsch A., Brücke C., Weise L., Schneider G. H., Brown P. Premovement activities in the subthalamic area of patients with Parkinson's disease and their dependence on task. Eur. J. Neurosci. 2007, 25, 3137-3145.
  • 61. Cassidy M., Mazzone P., Oliviero A., Insola A., Tonali P., Di Lazzaro V., Brown P.: Movement-related changes in synchronization in the human basal ganglia. Brain 2002 Jun, 125(Pt 6), 1235-1246.
  • 62. Williams D., Tijssen M., Van Bruggen,G., Bosch A., Insola A., Di LazzaroV., Mazzone P., Oliviero A., Quartarone A., Speelman H., Brown P.: Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 2002, 125, 1558-1569.
  • 63. Paradiso G., Saint-Cyr J. A., Lozano A. M., Lang A. E., Chen R.: Involvement of the human subthalamic nucleus in movement preparation. Neurology. 2003 Dec 9, 61(11), 1538-1545.
  • 64. Paradiso G., Cunic D., Saint-Cyr J. A., Hoque T., Lozano A. M., Lang A. E., Chen R. Involvement of human thalamus in the preparation of self-paced movement. Brain. 2004 Dec., 127(Pt 12), 2717-2731, Epub 2004 Aug 25.
  • 65. Purzner J., Paradiso G. O., Cunic D., Saint-Cyr J. A., Hoque T., Lozano A. M., Lang A. E., Moro E., Hodaie M., Mazzella F., Chen R.: Involvement of the basal ganglia and cerebellar motor pathways in the preparation of self-initiated and externally triggered movements in humans. J. Neurosci. 2007 May, 30, 27(22), 6029-6036.
  • 66. Wilson C. L., Puntis M., Lacey M. G.: Overwhelmingly asynchronous firing of rat subthalamic nucleus neurones in brain slices provides little evidence for intrinsic interconnectivity. Neuroscience 2004, 123(1), 187-200.
  • 67. Hammond C., Bergman H., Brown P.: Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci. 2007 Jul, 30(7), 357-364, Epub 2007 May 25.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0069-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.