PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distributed modeling of osmotic fluid flow during single exchange with hypertonic glucose solution

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to model fluid and solute peritoneal transport inside the tissue together with the kinetics in peritoneal cavity during single exchange with hypertonic glucose 3.86% solution. The distributed model of osmotic flow and glucose transport was formulated and applied for computer simulations assuming 1 cm width of tissue layer. The simulated kinetics of intraperitoneal volume and glucose concentration were in good agreement with clinical data. The predicted intratissue profiles of glucose concentration and hydrostatic pressure of the interstitial fluid demonstrated a restricted penetration of glucose (0.1 cm) and water (0.25 cm) into the interstitium at the end of dwell time, in agreement with animal data. The proposed model was able to describe correctly the basic kinetics of peritoneal dialysis as investigated in clinical studies and intratissue profiles known from animal studies.
Twórcy
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Trojdena 4, 02-109 Warsaw, Poland, jstachowska@ibib.waw.pl
Bibliografia
  • 1. Rippe B., Krediet R. T.: Peritoneal physiology - transport of solutes, In: Gokal R, Nolph K D, Book, Kluwer Academic Publishers, Dordrecht 1994, 69-113.
  • 2. Waniewski J.: Mathematical modeling of fluid and solute transport in hemodialysis and peritoneal dialysis. J. Mem. Sci. 2006, 274, 24-37.
  • 3. Waniewski J., Heimburger O., Werynski A., Lindholm B.: Simple models for fluid transport during peritoneal dialysis. Int. J. Artif. Organs 1996, 19, 455-466.
  • 4. Dedrick R. L., Flessner M. F., Collins J. M., Schulz J. S.: Is the peritoneum a membrane? ASAIO J. 1982, 5, 1-8.
  • 5. Flessner M. F.: Transport of protein in the abdominal wall during intraperitoneal therapy. I. Theoretical approach. Am. J. Physiol. Gastrointest Liver Physiol. 2001, 281, G424-437.
  • 6. Flessner M. F., Dedrick R. L., Schultz J. S.: A distributed model of peritoneal-plasma transport: theoretical considerations. Am. J. Physiol. 1984, 246, R597-607.
  • 7. Waniewski J.: Distributed modeling of diffusive solute transport in peritoneal dialysis. Ann. Biomed. Eng. 2002, 30, 1181-1195.
  • 8. Waniewski J.: Physiological interpretation of solute transport parameters for peritoneal dialysis. J. Theoret. Med. 2001, 3, 177-190.
  • 9. Waniewski J.: Transit time, residence time, and the rate of approach to steady state for solute transport during peritoneal dialysis. Ann. Biomed. Eng. 2008, 36, 1735-1743.
  • 10. Waniewski J., Weryński A., Lindholm B.: Effect of blood perfusion on diffusive transport in peritoneal dialysis. Kidney Int. 1999, 56, 707-713.
  • 11. Seames E. L., Moncrief J. W., Popovich R. P.: A distributed model of fluid and mass transfer in peritoneal dialysis. Am. J. Physiol. 1990, 258, R958-972.
  • 12. Zakaria E. R., Lofthouse J., Flessner M. F.: In vivo effects of hydrostatic pressure on interstitium of abdominal wall muscle. Am. J. Physiol. 1999, 276, H517-529.
  • 13. Stachowska-Piętka J., Waniewski J., Flessner M., Lindholm B.: A mathematical model of peritoneal fluid absorption in the tissue. Adv. Perit. Dial. 2005, 21, 9-12.
  • 14. Stachowska-Piętka J., Waniewski J., Flessner M. F., Lindholm B.: Distributed model of peritoneal fluid absorption. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H1862-1874.
  • 15. Flessner M. F.: Osmotic barrier of the parietal peritoneum. Am. J. Physiol. 1994, 267, F861-870.
  • 16. Flessner M. F.: Small-solute transport across specific peritoneal tissue surfaces in the rat. J. Am. Soc. Nephrol. 1996, 7, 225-233.
  • 17. Flessner M. F., Dedrick R. L., Reynolds J. C.: Bidirectional peritoneal transport of immunoglobulin in rats: tissue concentration profiles. Am. J. Physiol. 1992, 263, F15-23.
  • 18. Flessner M. F., Dedrick R. L., Schultz J. S.: A distributed model of peritoneal-plasma transport: analysis of experimental data in the rat. Am. J. Physiol. 1985, 248, F413-424.
  • 19. Flessner M. F., Deverkadra R., Smitherman J., Li X., Credit K.: In vivo determination of diffusive transport parameters in a superfused tissue. Am. J. Physiol. Renal Physiol. 2006, 291, F1096-1103.
  • 20. Flessner M. F., Fenstermacher J. D., Dedrick R. L., Blasberg R. G.: A distributed model of peritoneal plasma transport: tissue concentration gradients. Am. J. Physiol. 1985, 248, F425-435.
  • 21. Flessner M. F., Lofthouse J., Zakaria el R.: In vivo diffusion of immunoglobulin G in muscle: effects of binding, solute exclusion, and lymphatic removal. Am. J. Physiol. 1997, 273, H2783-2793.
  • 22. Zakaria el R., Lofthouse J., Flessner M. F.: In vivo hydraulic conductivity of muscle: effects of hydrostatic pressure. Am. J. Physiol. 1997, 273, H2774-2782.
  • 23. Zakaria E. R., Lofthouse J., Flessner M. F.: Effect of intraperitoneal pressures on tissue water of the abdominal muscle. Am. J. Physiol Renal Physiol. 2000, 278, F875-885.
  • 24. Zakaria E. R., Lofthouse J., Flessner M. F.: Hydrostatic and osmotic pressures modulate partitioning of tissue water in abdominal muscle during dialysis. Perit. Dial. Int. 1999, 19 Suppl 2, S208-211.
  • 25. Waniewski J., Dutka V., Stachowska-Piętka J., Cherniha R.: Distributed modeling of glucose-induced osmotic flow. Adv. Perit. Dial. 2007, 23, 2-6.
  • 26. Waniewski J., Stachowska-Piętka J., Flessner M. F.: Distributed modeling of osmotically driven fluid transport in peritoneal dialysis: theoretical and computational investigations. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1960-1968.
  • 27. Waniewski J.: Distributed model for fluid flow driven by hydrostatic and osmotic pressure during peritoneal dialysis, in IFMBE Proceedings (vol 25/VII), edited by Dossel O., Schlegel W. C., Springer, 2009, 54-57.
  • 28. Cherniha R., Waniewski J.: Exact solutions of a mathematical model for fluid transport in peritoneal dialysis. Ukrainian Mathematical Journal. 2005, 57, 1112-1119.
  • 29. Rippe B., Stelin G., Haraldsson B.: Computer simulations of peritoneal fluid transport in CAPD. Kidney Int. 1991, 40, 315-325.
  • 30. Twardowski Z. J., Prowant B. F., Nolph K. D., Martinez A. J., Lampton L. M.: High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int. 1983, 23, 64-70.
  • 31. Watson P. D.: Permeability of cat skeletal muscle capillaries to small solutes. Am. J. Physiol. 1995, 268, H184-193.
  • 32. Heimbüger O., Waniewski J., Werynski A., Lindholm B.: A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int. 1992, 41, 1320-1332.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0069-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.