PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study on new right/left inverses of nonsquare polynomial matrices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents several new results on the inversion of full normal rank nonsquare polynomial matrices. New analytical right/left inverses of polynomial matrices are introduced, including the so-called [...]-inverses, [...]-inverses and, in particular, S-inverses, the latter providing the most general tool for the design of various polynomial matrix inverses. The application-oriented problem of selecting stable inverses is also solved. Applications in inverse-model control, in particular robust minimum variance control, are exploited, and possible applications in signal transmission/recovery in various types of MIMO channels are indicated.
Rocznik
Strony
331--348
Opis fizyczny
Bibliogr. 69 poz., tab.
Twórcy
autor
  • Institute of Control and Computer Engineering, Opole University of Technology, ul. Sosnkowskiego 31, 45-272 Opole, Poland, w.hunek@po.opole.pl
Bibliografia
  • [1] Bańka, S. and Dworak, P. (2006). Efficient algorithm for designing multipurpose control systems for invertible and right-invertible MIMO LTI plants, Bulletin of the Polish Academy of Sciences: Technical Sciences 54(4): 429-436.
  • [2] Bańka, S. and Dworak, P. (2007). On decoupling of LTI MIMO systems with guaranteed stability, Measurement Automation and Monitoring 53(6): 46-51.
  • [3] Ben-Israel, A. and Greville, T. N. E. (2003). Generalized Inverses, Theory and Applications, 2nd Edn., Springer-Verlag, New York, NY.
  • [4] Bernardini, R. and Rinaldo, R. (2006). Oversampled filter banks from extended perfect reconstruction filter banks, IEEE Transactions on Signal Processing 54(7): 2625-2635, DOI: 10.1109/TSP.2006.874811.
  • [5] Boche, H. and Pohl, V. (2006). MIMO-ISI channel equalization-Which price we have to pay for causality, Proceedings of the 14th European Signal Processing Conference (EUSIPCO'2006), Florence, Italy, (on CD-ROM).
  • [6] Bose, N. K. and Mitra, S. K. (1978). Generalized inverse of polynomial matrices, IEEE Transactions on Automatic Control 23(3): 491-493.
  • [7] Callier, F. M. and Kraffer, F. (2005). Proper feedback compensators for a strictly proper plant by polynomial equations, International Journal of Applied Mathematics and Computer Science 15(4): 493-507.
  • [8] Castella, M. and Pesquet, J.-C. (2004). An iterative blind source separation method for convolutive mixtures of images, in C.G. Puntonet and A. Prieto (Eds.), Independent Component Analysis and Blind Signal Separation, Lecture Notes in Computer Science, Vol. 3195, Springer-Verlag, Heidelberg/Berlin, pp. 922-929.
  • [9] Chen, J. and Hara, S. (2001). Tracking performance with finite input energy, in S.O.R. Moheimani (Ed.), Perspectives in Robust Control, Lecture Notes in Control and Information Sciences, Vol. 268, Springer-Verlag, Heidelberg/Berlin, Chapter 4, pp. 41-55.
  • [10] Davison, E. (1983). Some properties of minimum phase systems and 'squared-down' systems, IEEE Transactions on Automatic Control 28(2): 221-222.
  • [11] Desoer, C. A. and Schulman, J. D. (1974). Zeros and poles of matrix transfer functions and their dynamical interpretation, IEEE Transactions on Circuits and Systems 21(1): 3-8.
  • [12] Edelmayer, A., Bokor, J., Szabó, Z. and Szigeti, F. (2004). Input reconstruction by means of system inversion: A geometric approach to fault detection and isolation in nonlinear systems, International Journal of Applied Mathematics and Computer Science 14(2): 189-199.
  • [13] Ferreira, P. M. G. (1988). Some results on system equivalence, International Journal of Control 48(5): 2033-2042, DOI: 10.1080/00207178808906303.
  • [14] Fornasini, E. and Pinto, R. (2004). Matrix fraction descriptions in convolutional coding, Linear Algebra and Its Applications 392: 119-158, DOI: 10.1016/j.laa.2004.06.007.
  • [15] Forney, Jr.,G. D. (1991). Algebraic structure of convolutional codes, and algebraic system theory, in A.C. Antoulas (Ed.), Mathematical System Theory: The Influence of R.E. Kalman, Springer-Verlag, Heidelberg/Berlin, pp. 527-557.
  • [16] Gan, L. and Ling, C. (2008). Computation of the para-pseudoinverse for oversampled filter banks: Forward and backward Greville formulas, IEEE Transactions on Signal Processing 56(12): 5851-5860, DOI: 10.1109/TSP.2008.2005086.
  • [17] Gluesing-Luerssen, H., Rosenthal, J. and Smarandache, R. (2006). Strongly-MDS convolutional codes, IEEE Transactions on Information Theory 52(2): 584-598, DOI: 10.1109/TIT.2005.862100.
  • [18] Guo, Y. and Levy, B. C. (2004). Design of FIR precoders and equalizers for broadband MIMO wireless channels with power constraints, EURASIP Journal on Wireless Communications and Networking 2004(2): 344-356, DOI: 10.1155/S1687147204406185.
  • [19] Harikumar, G. and Bresler, Y. (1999a). Exact image deconvolution from multiple FIR blurs, IEEE Transactions on Image Processing 8(6): 846-862, DOI: 10.1109/83.766861.
  • [20] Harikumar, G. and Bresler, Y. (1999b). Perfect blind restoration of images blurred by multiple filters: Theory and efficient algorithms, IEEE Transactions on Image Processing 8(2): 202-219, DOI: 10.1109/83.743855.
  • [21] Hautus, M. L. J. and Heymann, M. (1983). Linear feedback decoupling-Transfer function analysis, IEEE Transactions on Automatic Control 28(8): 823-832.
  • [22] Henrion, D. (1998). Reliable Algorithms for Polynomial Matrices, Ph.D. thesis, Institute of Information Theory and Automation, Czech Academy of Sciences, Prague.
  • [23] Hunek, W. P. (2008). Towards robust minimum variance control of nonsquare LTI MIMO systems, Archives of Control Sciences 18(1): 59-71.
  • [24] Hunek,W. P. (2009a). A new general class of MVC-related inverses of nonsquare polynomial matrices based on the Smith factorization, Proceedings of the 14th IEEE IFAC International Conference on Methods and Models in Automation and Robotics (MMAR'2009), Międzyzdroje, Poland, (on CD-ROM).
  • [25] Hunek, W. P. (2009b). Towards robust pole-free designs of minimum variance control for LTI MIMO systems, in S. Pennacchio (Ed.), Recent Advances in Control Systems, Robotics and Automation, 3rd Edn., International Society for Advanced Research, Palermo, pp. 168-174.
  • [26] Hunek, W. P. and Latawiec, K. J. (2009). Minimum variance control of discrete-time and continuous-time LTI MIMO systems-A new unified framework, Control and Cybernetics 38(3): 609-624.
  • [27] Hunek, W. P., Latawiec, K. J., Łukaniszyn, M. and Gawdzik, A. (2010). Constrained minimum variance control of nonsquare LTI MIMO systems, 15th IEEE International Conference on Methods and Models in Automation and Robotics (MMAR'2010), Międzyzdroje, Poland, pp. 365-370.
  • [28] Hunek, W. P., Latawiec, K. J. and Stanisławski, R. (2007). New results in control zeros vs. transmission zeros for LTI MIMO systems, Proceedings of the 13th IEEE IFAC International Conference on Methods and Models in Automation and Robotics (MMAR'2007), Szczecin, Poland, pp. 149-153.
  • [29] Inouye, Y. and Tanebe, K. (2000). Super-exponential algorithms for multichannel blind deconvolution, IEEE Transactions on Signal Processing 48(3): 881-888, DOI: 10.1109/78.824685.
  • [30] Johannesson, R., Wan, Z.-X. and Wittenmark, E. (1998). Some structural properties of convolutional codes over rings, IEEE Transactions on Information Theory 44(2): 839-845, DOI: 10.1109/18.661532.
  • [31] Johannesson, R. and Zigangirov, K. S. (1999). Fundamentals of Convolutional Coding, IEEE Press, New York, NY.
  • [32] Kaczorek, T. (2005). Extension of the Cayley-Hamilton theorem for right and left inverses of polynomial matrices and rational matrices, Electrical Review 81(11): 66-71.
  • [33] Kaczorek, T., Dzieliński, A., Dąbrowski, W. and Łopatka, R. (2009). Fundamentals of Control Theory, 3rd Edn., Wydawnictwa Naukowo-Techniczne, Warsaw, (in Polish).
  • [34] Kaczorek, T. and Łopatka, R. (2000). Existence and computation of the set of positive solutions to polynomial matrix equations, International Journal of Applied Mathematics and Computer Science 10(2): 309-320.
  • [35] Kailath, T. (1980). Linear Systems, Prentice Hall, Englewood Cliffs, NJ.
  • [36] Karampetakis, N. P. and Tzekis, P. (2001). On the computation of the generalized inverse of a polynomial matrix, IMA Journal of Mathematical Control and Information 18(1): 83-97, DOI: 10.1093/imamci/18.1.83.
  • [37] Kim, S. and Park, Y. (2004). A direct design method of inverse filters for multichannel 3D sound rendering, Journal of Sound and Vibration 278(4-5): 1196-1204, DOI: 10.1016/j.jsv.2003.12.014.
  • [38] Kon'kova, T. Y. and Kublanovskaya, V. N. (1996). Inversion of polynomial and rational matrices, Journal of Mathematical Sciences 79(3): 1093-1100, DOI: 10.1007/BF02366129.
  • [39] Kwan, M. W. and Kok, C. W. (2006). Iterative joint optimization of minimal transmit redundancy FIR zero-forcing precoder-equalizer system for MIMO-ISI channel, IEEE Transactions on Signal Processing 54(1): 204-213, DOI: 10.1109/TSP.2005.861059.
  • [40] Latawiec, K. J. (1998). Contributions to Advanced Control and Estimation for Linear Discrete-Time MIMO Systems, Opole University of Technology Press, Opole.
  • [41] Latawiec, K. J. (2004). The Power of Inverse Systems in Linear and Nonlinear Modeling and Control, Opole University of Technology Press, Opole.
  • [42] Latawiec, K. J. (2005). Control zeros and maximum-accuracy/maximum-speed control of LTI MIMO discrete-time systems, Control and Cybernetics 34(2): 453-475.
  • [43] Latawiec, K. J., Bańka, S. and Tokarzewski, J. (2000). Control zeros and nonminimum phase LTIMIMO systems, Annual Reviews in Control 24(1): 105-112. DOI: 10.1016/S1367-5788(00)90021-X.
  • [44] Latawiec, K. J., Hunek, W. P. and Łukaniszyn, M. (2004). A new type of control zeros for LTI MIMO systems, Proceedings of the 10th IEEE International Conference on Methods and Models in Automation and Robotics (MMAR'2004), Międzyzdroje, Poland, pp. 251-256.
  • [45] Latawiec, K. J., Hunek, W. P. and Łukaniszyn, M. (2005). New optimal solvers of MVC-related linear matrix polynomial equations, Proceedings of the 11th IEEE International Conference on Methods and Models in Automation and Robotics (MMAR'2005), Międzyzdroje, Poland, pp. 333-338.
  • [46] Law, K. L., Fossum, R. M. and Do, M. N. (2009). Generic invertibility of multidimensional FIR filter banks and MIMO systems, IEEE Transactions on Signal Processing 57(11): 4282-4291, DOI: 10.1109/TSP.2009.2025826.
  • [47] Lin, S. and Costello, D.J. (2004). Error Control Coding, 2nd Edn., Prentice Hall, Upper Saddle River, NJ.
  • [48] Lu, P., Li, S., Zou, Y. and Luo, X. (2005). Blind recognition of punctured convolutional codes, Science in China, Series F: Information Sciences 48(4): 484-498, DOI: 10.1360/03yf0480.
  • [49] Moon, T. K. (2005). Error Correction Coding: Mathematical Methods and Algorithms, John Wiley & Sons, Hoboken, NJ.
  • [50] Quadrat, A. (2004). On a general structure of the stabilizing controllers based on stable range, SIAM Journal on Control and Optimization 42(6): 2264-2285, DOI: 10.1137/S0363012902408277.
  • [51] Quevedo, D. E., Bölcskei, H. and Goodwin, G. C. (2009). Quantization of filter bank frame expansions through moving horizon optimization, IEEE Transactions on Signal Processing 57(2): 503-515, DOI: 10.1109/TSP.2008.2008259.
  • [52] Sontag, E. D. (1980). On generalized inverses of polynomial and other matrices, IEEE Transactions on Automatic Control 25(3): 514-517.
  • [53] Stanimirović, P. S. (2003). A finite algorithm for generalized inverses of polynomial and rational matrices, Applied Mathematics and Computation 144(2-3): 199-214, DOI: 10.1016/S0096-3003(02)00401-0.
  • [54] Stanimirović, P. S. and Petković, M. D. (2006). Computing generalized inverse of polynomial matrices by interpolation, Applied Mathematics and Computation 172(1): 508-523, DOI: 10.1016/j.amc.2005.02.031.
  • [55] Tidestav, C., Sternad, M. and Ahlen, A. (1999). Reuse within a cell-interference rejection or multiuser detection?, IEEE Transactions on Communications 47(10): 1511-1522, DOI: 10.1109/26.795820.
  • [56] Tokarzewski, J. (2002). Zeros in Linear Systems: A Geometric Approach, Warsaw University of Technology Press, Warsaw
  • [57] Tokarzewski, J. (2004). A note on some characterization of invariant zeros in singular systems and algebraic criteria of nondegeneracy, International Journal of Applied Mathematics and Computer Science 14(2): 149-159.
  • [58] Trentelman, H. L., Stoorvogel, A. A. and Hautus, M. (2001). Control Theory for Linear Systems, Communications and Control Engineering, Springer-Verlag, New York, NY.
  • [59] Tuncer, T. E. (2004). Deconvolution and preequalization with best delay LS inverse filters, Signal Processing 84(11): 2207-2219, DOI: 10.1016/j.sigpro.2004.06.023.
  • [60] Vaidyanathan, P. P. and Chen, T. (1995). Role of anticausal inverses in multirate filter-banks-Part I: System-theoretic fundamentals, IEEE Transactions on Signal Processing 43(5): 1090-1102, DOI: 10.1109/78.382395.
  • [61] Vardulakis, A. I. G. (1991). Linear Multivariable Control: Algebraic Analysis and Synthesis Methods, 1st Edn., John Wiley & Sons, Chichester.
  • [62] Varga, A. (2001). Computing generalized inverse systems using matrix pencil methods, International Journal of Applied Mathematics and Computer Science 11(5): 1055-1068.
  • [63] Vologiannidis, S. and Karampetakis, N. P. (2004). Inverses of multivariable polynomial matrices by discrete Fourier transforms, Multidimensional Systems and Signal Processing 15(4): 341-361, DOI: 10.1023/B:MULT.0000037345.60574.d4.
  • [64] Wahls, S. and Boche, H. (2007). Stable and causal LTI-precoders and equalizers for MIMO-ISI channels with optimal robustness properties, Proceedings of the International ITG/IEEE Workshop on Smart Antennas (WSA'2007), Vienna, Austria, (on CD-ROM).
  • [65] Wahls, S., Boche, H. and Pohl, V. (2009). Zero-forcing precoding for frequency selective MIMO channels with H infinity criterion and causality constraint, Signal Processing 89(9): 1754-1761, DOI: 10.1016/j.sigpro.2009.03.010.
  • [66] Williams, T. and Antsaklis, P. J. (1996). Decoupling, in W. S. Levine (Ed.), The Control Handbook, Electrical Engineering Handbook, CRC Press/IEEE Press, Boca Raton, FL, Chapter 50, pp. 745-804.
  • [67] Xia, X.-G., Su, W. and Liu, H. (2001). Filterbank precoders for blind equalization: Polynomial ambiguity resistant precoders (PARP), IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications 48(2): 193-209, DOI: 10.1109/81.904884.
  • [68] Zhang, L. and Makur, A. (2009). Multidimensional perfect reconstruction filter banks: An approach of algebraic geometry, Multidimensional Systems and Signal Processing 20(1): 3-24, DOI: 10.1007/s11045-008-0060-5.
  • [69] Zhang, S. Y. (1989). Generalized proper inverse of polynomial matrices and the existence of infinite decoupling zeros, IEEE Transaction on Automatic Control 34(7): 743-745, DOI: 10.1109/9.29403.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0066-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.