PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plasma techniques in polymeric treatment for membrane applications: a review

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polymers are the most often applicable materials in biomedicine. Technical developments require materials with specific surface properties. Low temperature plasma treatment is a method that competes with a classic physical or chemical treatment due to its time saving, economy. It also ensures modification of very thin surfaces of materials without any changes in bulk properties. The article describes plasma techniques that modify materials which are used as substrates for proteins immobilisation, cellular or tissue cultures and materials which are exploited to produce artificial organs. Author focused on the popular polymers: polyarylosulfones, polyurethanes and polyacrylonitrile and its modification to various application: artificial organs, cellular and tissue cultures, bioreactors, biosensors and medicine dosage. The paper also provides the description of some technical solutions concerning plasma reactors with both vacuous and atmospheric pressure.
Twórcy
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland, ewaluk@ibib.waw.pl
Bibliografia
  • 1. Żenkiewicz M.: Adhesion and modification of outer surface of plastics, Science Press WNT, Warszawa 2000.
  • 2. Ratner B.D.: Surface modification of polymers: chemical, biological and surface analytical challenges. Biosensors &Bioelectronic 1995, 10, 797-804.
  • 3. Ito Y.: Tissue engineering by immobilized growth factors. Materials Science and Engineering: C. 1998, 6, 267-274.
  • 4. Hsuie G.H., Lee S.D., Chang P.C., Kao C.Y.: Surface characterization and biological properties study of silicone rubber material grafted with phospholipid as biomaterial via plasma induced graft copolymerization. J. Biomed. Mater. Res. 1998, 42, 134-147.
  • 5. Kuen Y.L., Wan S.H., Won H.P.: Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials 1995, 16, 1211-1216.
  • 6. Leong K.W., D'Amore P.D., Marletta M., Langer R.: Bioerodible polyanhydrides as drug-carrier matrices. II Biocompatibility and chemical reactivity. J. Biomed. Mater. Res. 1986, 20, 51-64.
  • 7. Szmigiel D., Domanski K., Prokaryn P., Grabiec P., Sobczak J.W.: The effect of fluorine-based plasma treatment on morphology and chemical surface composition of biocompatible silicone elastomer. Appl. Surf. Science 2006, 253, 1506-1511.
  • 8. Tao C.T., Young T.H.: Polyetherimide membrane formation by the cononsolvent system and its biocompatibility of MG63 cell line. J. Membrane Science 2006, 269. 66-74.
  • 9. Langer L., Vacanti J.P.: Tissue engineering. Science 1993, 260, 920-926.
  • 10. Uchiyama T., Watanabe J., Ishihara K.: Biocompatible polymer alloy membrane for implantable artificial pancreas. J. Memb. Science 2002, 208, 39-48.
  • 11. Ping-Chung K., Diptiranjan S., Hsin H.Y.: Properties and biodegradability of chitosan/nylon 11 blending films. Polymer Degradation and Stability 2006, 91, 3097-3102.
  • 12. Tyszler D., Zytner R.G., Batsch A., Brügger A., Geissler S., Zhou H., et al: Reduced fouling tendencies of ultrafiltration membranes in wastewater treatment by plasma modification. Desalination. 2006, 189, 119-129.
  • 13. Yu H.Y., Liu L.Q., Tang Z.Q., Yan M.G., Gu J.S., Wei X.W.: Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: Air plasma treatment. J. Memb. Science 2008, 311, 216-224.
  • 14. Kull K.R., Steen M.L., Fisher E.R.: Surface modification with nitrogen-containing plasmas to produce hydrophilic low-fouling membranes. J. Memb. Science 2005, 246, 203-215.
  • 15. Wu B.Y., Hou S.H., Huang L., Yin F., Zhao Z.X., Anzai J.I., et al.: Oriented immobilization of immunoglobulin G onto the cuvette surface of the resonant mirror biosensor through layer-by-layer assembly of multilayer films. Materials Science & Engineering C. 2008, 28, 1065-1069.
  • 16. Asfardjani K., Segui Y., Aurelle Y., Abidine N.: The effects of plasma treatment on wettability of polysulfone and polyetherimide. J. Appl. Polym. Sci. 1991, 43, 271-281.
  • 17. Wavhal D.S., Fisher E.R.: Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization. J. Memb. Science 2002, 209, 255-269.
  • 18. Steen M. L., Jordan A. C., Fisher E. R.: Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment. J. Memb. Science 2002, 204, 341-357.
  • 19. Clarotti G., Schue F., Sledz J., Geckeler K.E., Gopel W., Orsetti A.: Plasma deposition of thin fluorocarbon films for increased membrane hemocompatibility. J. Memb. Science 1991, 61, 289-301.
  • 20. Nilasaroya A., Poole-Warren L.A., Whitelock J.M., Jo Martens P. Structural and functional characterisation of poly(vinyl alcohol) and heparin hydrogels. Biomaterials 2008, 29, 4658-4664.
  • 21. Steen M.L., Hymas L., Havey E.D., Capps N.E., Castner D.G., Fisher E.R.: Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification. J. Memb. Science 2001, 188, 97-114.
  • 22. Ishihara K., Fukumoto K., Iwasaki Y., Nakabayashi N.: Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion Biomaterials 1999, 20, 1553-1559.
  • 23. Thull R.: Surface modifications to improve biocompatibility and mechanical properties of orthopedic implants. Der Orthopäde 2003, 32, 51-59.
  • 24. Rocha J.M.S., Gil M.H., Garcia F.A.P.: Effects of additives on the activity of a covalently immobilised lipase in organic media. J. Biotech. 1998, 66, 61-67.
  • 25. Tatoulian M., Arefi-Khonsari F., Amouroux J., Rejeb S.B., Martel A.: Immobilization of biomolecules on NH3, H2/NH3 plasma-treated nitrocellulose films. Plasma Polym. 1998, 3, 211-229.
  • 26. El Ghoul Y., Blanchemain N., Laurent T., Campagne C., El Achari A., Roudesli S., et al: Chemical, biological and microbiological evaluation of cyclodextrin finished polyamide inguinal meshes. Acta Biom. 2008, 4, 1392-1400.
  • 27. Minoura N., Koyano T., Koshizaki N., Umehara H., Nagura M., Kobayashi K.: Preparation, properties, and cell attachment/growth behavior of PVA/chitosan-blended hydrogels. Materials Science and Engineering: C. 1998, 6, 275-280.
  • 28. Mikos A.G., Thorsen A.J., Czerwonka L.A., Bao Y., Langer R., Winslow D.N.: Preparation and characterization of poly(L-lactic acid) foams. Polymer 1994, 35, 1068-1077.
  • 29. Anderson D.G., Putnam D., Lavik E.B., Mahmood T.A, Langer R.: Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials 2005, 26, 4892-4897.
  • 30. De Bartolo L., Morelli S., Lopez L.C., Giorno L., Campana C.: Biotransformation and liver specific functions of human hepatocytes in culture on RGD-immobilized plazma-processed membranes. Biomaterials 2005, 26, 4432.
  • 31. Yamaguchi M., Shinbo T., Kanamori T., Wang P.C., Niwa M.: Surface modification of poly(L-lactic acid) affects initial cell attachment, cell morphology, and cell growth. J. Artif. Organs 2004, 7, 187-193.
  • 32. Ishihara K., Iwasaki Y., Nakabayashi N.: Novel biomedical polymers for regulating serious biological reactions. Materials Science and Engineering: C. 1998, 6, 253-259.
  • 33. Kizling M.B., Jaras S.G.: A review of the use of plasma techniques in catalyst preparation and catalytic reaction. Appl. Catal. A: General 1996, 147, 1-21.
  • 34. Zhang S., Wright G., Yang Y.: Materials and techniques for electrochemical biosensor design and construction. Biosensors & Bioelectronics 2000, 15, 273-282.
  • 35. Bayramoglu G., Altinok H., Bulut A., Denizli A., Arica M.Y.: Preparation and application of spacer-arm-attached poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) films for urease immobilisation. Reactive and Functional Polymers 2003, 56, 111-121.
  • 36. Kramer P.W., Yeh Y.S., Yasuda H.: Low temperature plasma for preparation of separation membranes. J. Memb. Science 1989, 46, 1-28.
  • 37. Favia P., Lopez L.C., Sardella E., Gristina R., Nardulli M., d'Agostino R.: Low temperature plasma processes for biomedical applications and membrane processing. Desalination 2006, 199, 268-270.
  • 38. Gancarz I., Bryjak J., Pozniak G., Tylus H.: Plasma modified polymers as a support for enzyme immobilization II. Amines plasma. Europ. Polymer Journal 2003, 39, 2217-2224.
  • 39. Jenkins M. Biomedicals Polymers. 2007.
  • 40. Chen V.J., Smith L.A., Ma P.X.: Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials 2006, 27, 3973-3979.
  • 41. Burg K.J., Porter S., Kellam J.F.: Biomeaterial developments for bone tissue engineering. Biomaterials 2000, 21, 2347-2359.
  • 42. Chim H., Ong J.L., Schantz J.T., Hutmacher D.W.: Efficacy of glow discharge gas plasma treatment as a surface modification process for three-dimensional poly(D,L-lactide) scaffolds. J. Biomed. Mater Res. A. 2003, 65, 327-335.
  • 43. Ma P.X., Choi J.W.: Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 2001, 7, 23-33.
  • 44. Akihiko K., Teruo O.: Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J. Contr. Release. 2005, 101, 69-84.
  • 45. Woo K.M., Jun J.H., Chen V.J., Seo J., Baek J.H., Ryoo H.M., et al.: Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 2007, 28, 335-343.
  • 46. Chen V.J., Ma P.X.: Nano-fibrous poly(l-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 2004, 25, 2065-2073.
  • 47. Hang R., Ma P.X.: Synthetic nanofibrillar extracellular matrices with predesigned macroporous architectures. J. Biomed. Mater. Res. 2000, 52, 430-438.
  • 48. Carignano M.A., Szleifer I.: Controlling Surface Interactions with Grafted Polymers. Interface Science 2003,11, 187-197.
  • 49. Jae-Kwon K., Dong-Sik S., Woo-Jae C., Ki-Hoon J., Kook-Nyung L., Yong-Kweon K., et al: Effects of polymer grafting on a glass surface for protein chip applications. Colloids and Surfaces B: Biointerfaces 2004, 33, 67-75.
  • 50. Iwata H., Nakanoya T., Morohashi H., Chen J., Yamauchi T., Tsubokawa N.: Novel gas and contamination sensor materials from polyamide-block-poly(ethylene oxide)-grafted carbon black. Sensors and Actuators B 2006, 113, 875-882.
  • 51. Thacharodi D., Pandurang Rao K.: Development and in vitroevaluation of chitosan-based transdermal drug delivery systems for controlled delivery of propanolo-hydrochloride. Biomaterials 1995, 16, 145-148.
  • 52. Shi X.Y., Tan T.W.: Preparation of chitosan/ethylcellulose complex microcapsule and its application in controlled release of Vitamin D2. Biomaterials 2002, 23, 4469-4473.
  • 53. Fu J., Fiegel J., Krauland E., Hanes J.: New polymeric carriers for controlled drug delivery following inhalation or injection Biomaterials. 2002, 23, 4425-4433.
  • 54. Kipper M.J., Shen E., Determan A., Narasimhan B.: Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials 2002, 23(22), 4405-4412.
  • 55. Kuzuya M., Kondo S., Sasai Y.: Plasma Techniques for Preparation of Controlled Drug Release System. Plasmas and Polymers. 2001, 6, 145-162.
  • 56. Dey J., Xu H., Shen J., Thevenot P., Gondi S.R., Nguyen K.T.: Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials. 2008, 29, 4637-4649.
  • 57. Leong K.W., Brott B.C., D'Amore P.D., Langer R.: Bioerodible polyanhydrides as drug-carrier matrices. I Characterization, degradation and release characteristics. J. Biomed. Mater. Res. 1985, 19, 941-955.
  • 58. Leclerc E., Furukawa K.S., Miyata F., Sakai Y., Ushida T., Fujii T.: Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications Biomaterials 2004, 25, 4683-4690.
  • 59. Zhang J.Y., Beckman E.J., Piesco N.P., Agarwal S.: A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro. Biomaterials 2000, 21, 1247-1258.
  • 60. Aizawa Y., Leipzig N., Zahir T., Shoichet M.: The effect of immobilized platelet derived growth factor AA on neural stem/progenitor cell differentiation on cell-adhesive hydrogels. Biomaterials 2008, 29, 4676-4683.
  • 61. Yoshida T., Takagi M.: Cell processing engineering for ex vivo expansion of hematopoietic cells: a review. Bioch. Eng. J. 2004, 20, 99-106.
  • 62. Howling G.I., Dettmar P.W., Goddard P.A., Hampson F.C., Dornish M., et al.: The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro Biomaterials 2001, 22, 2959-2966.
  • 63. Le Guillou-Buffello D., Hélary G., Gindre M., Pavon-Djavid G., et al.: Monitoring cell adhesion processes on bioactive polymers with the quartz crystal resonator technique Biomaterials 2005, 26, 4197-4205.
  • 64. Chen R.I., Gallant N.D., Smith J.R., Kipper M.J., Simon C.G.: Time-dependent effects of pre-aging polymer films in cell culture medium on cell adhesion and spreading. J. Mater. Science 2008, 19, 1759-1766.
  • 65. Lehocky M., Mracek A.: Improvement of dye adsorption on synthetic polyester fibers by low temperature plasma pretreatment. Materiały wewnętrzne 2006.
  • 66. Noshay A., Robeson L., M.: Sulfonated polysulfone. J. Appl. Polym. Sci. 1976, 20, 1885.
  • 67. Akgöl S., Yalçnkaya Y., Bayramoglu G., Denizli A., Arca M.Y.: Reversible immobilization of urease onto Procion Brown MX-5BR-Ni(II) attached polyamide hollow-fibre membranes. Proc. Bioch. 2002, 38, 675-683.
  • 68. Seeböck R., Esrom H., Charbonnier M., Romand M.: Modification of Polyimide in Barrier Discharge Air-Plasmas: Chemical and Morphological Effects. Plasmas and Polymers 2000, 5, 103-118.
  • 69. Koide M., Horiuchi T., Inushima T., Lee B.J., Tobayama M., Koinuma H.: A novel low temperature plasma generator with alumina coated electrode for open air material processing. Thin Solid Films 1998, 316, 65-67.
  • 70. Liu Z.M., Xu Z.K., Wan L.S., Wu J., Ulbricht M.: Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasma approach. J. Memb. Science 2005, 249, 21-31.
  • 71. Wagner A.J., Fairbrother D.H., Reniers F.: A Comparison of PE Surfaces Modified by Plasma Generated Neutral Nitrogen Species and Nitrogen Ions. Plasmas and Polymers 2003, 8, 119-134.
  • 72. Li R., Chen J.: Surface modification of poly (vinyl chloride) by long-distance and direct argon RF plasma. Chinese Science Bulletin 2006, 51, 615-619.
  • 73. Park Y.W., Inagaki N.: Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas. Polymer. 2003, 44, 1569-1575.
  • 74. Terajima T., Koinuma H.: Development of a combinatorial atmospheric pressure cold plasma processor. Appl. Surf. Science 2004, 223, 259-263.
  • 75. Schlemm H., Roth D.: Atmospheric pressure plasma processing with microstructure electrodes and microplanar reactors. Surf. Coat. Techn. 2001, 142-144, 272-276.
  • 76. Tran T.D., Mori S., Suzuki M.: Plasma modification of polyacrylonitrile ultrafiltration membrane. Thin Solid Films. 2007, 515, 4148-4152.
  • 77. Hirotsu T., Castillo M., Nakayama K., Tsuruta S., Suzuki H.: Surface wetting phenomena of plasma polymer-coated sheets of poly(l-lactic acid)/poly(butylene succinate). Thin Solid Films 2007, 515, 4125-4129.
  • 78. Kondo S., Sasai Y., Kuzuya M.: Development of biomaterial using durable surface wettability fabricated by plasma-assisted immobilization of hydrophilic polymer. Thin Solid Films2007, 515, 4136-4140.
  • 79. Aizawa H., Kawashima S., Kurosawa S., Noda K., Fujii T., Hirata M.: Synthesis and characterization of plasma-polymerized tert-butylacrylate films. Thin Solid Films 2007, 515, 4141-4147.
  • 80. Doucouré A., Guizard C., Durand J., Berjoan R., Cot L.: Plasma polymerization of fluorinated monomers on mesoporous silica membranes and application to gas permeation. J. Memb. Science 1996, 117, 143-150.
  • 81. Favia P., d'Agostino R. Plasma treatments and plasma deposition of polymers for biomedical applications. Surf. Coat. Technol. 1998, 98, 1102-1106.
  • 82. Cho D.L., Ekengren O. Composite membrane formed by plasma-polymerized acrylic acid for ultrafiltration of bleach effluent. J. Appl. Polym. Sci. 1993, 47, 2125-2133.
  • 83. Detomaso L., Gristina R., Senesi G.S., d'Agostino R., Favia P.: Stable plasma-deposited acrylic acid surfaces for cell culture applications. Biomaterials 2005, 26, 3831.
  • 84. Palumbo F., Favia P., Rinaldi A., Vulpio M., d'Agostino R.: PE-CVD or organic thin films with controlled surface density of carboxylic groups. Plasmas and Polymers 1999, 4, 133-136.
  • 85. Matsuyama H., Teramoto M., Hirai K.: Effect of plasma treatment on CO2 permeability and selectivity of poly(dimethylsiloxane) membrane. J. Memb. Science 1995, 99, 139-147.
  • 86. Belfer S., Fainchtain R., Purinson Y., Kedem O.: Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. J. Memb. Science 2000, 172, 113-124.
  • 87. Badey J.P., Espuche E., Sage D., Chabert B., Jugnet Y., Batier C., et al: A comparative study of the effects of ammonia and hydrogen plasma downstream treatment on the surface modification of polytetrafluoroethylene. Polymer 1996, 37, 1377-1386.
  • 88. Ulbricht M., Belfort G.: Surface modification of ultrafiltration membranes by low temperature plasma II Graft polymerization onto polyacrylonitrile and polysulfone. J. Memb. Science 1996, 111, 193-215.
  • 89. Vigo F., Nicchia M., Uliana C.: Poly(vinyl chloride) ultrafitration membranes modified by high frequency discharge treatment. Journal of Membrane Science 1988, 36, 187-199.
  • 90. Sheldon J.M., Reed I.M., Hawes C.R. The fine structure of ultrafiltration membranes: II Protein fouled membranes. J. Memb. Science 1991, 62, 87-102.
  • 91. Johnson B.C., Yilgar I., Tran C.: Synthesis and characterization of sulfonated poly(arylene ether sulfone). J. Polym. Sci. Chem. 1984, 22, 721.
  • 92. Poźniak G., Krajewska B., Trochimczuk W.: Urease immobilized on modified polysulfone membrane: preparation and properties. Biomaterials 1995, 16, 129-134.
  • 93. Guan R., Zou H., Lu D., Gong C.I., Liu Y.: Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. Europ. Polym. J. 2005, 41, 1554-1560.
  • 94. Bowen R.W., Doneva T.A., Yin H.B.: Polysulfone - sulfonated poly(ether ether) ketone blend membranes: systematic synthesis and characterisation. J. Memb. Science 2001, 181, 253-263.
  • 95. Mockel D., Staude E., Guiver M.D.: Static protein adsorption, ultrafiltration behavior and cleanbility of hydrofilized polysulfone membranes. J. Memb. Science 1999, 158, 63-75.
  • 96. Ben Rejeb S., Tatoulian M., Arefi Khonsari F., Fischer Durand N.: Functionalization of nitrocellulose membranes using ammonia plasma for the covalent attachment of antibodies for use in membrane-based immunoassays. Analytica Chimica Acta 1998, 376, 133-138.
  • 97. Gancarz I., Pozniak G., Bryjak M., Tylus W.: Modification of polysulfone membranes 5. Effect of n-butylamine and allylamine plasma. Europ. Polym. J. 2002, 38, 1937-1946.
  • 98. Pu F.R., Williams R.L., Markkula T.K., Hunt J.A.: Effects of plasma treated PET and PTFE on expression of adhesion molecules by human endothelial cells in vitro. Biomaterials 2002, 23, 2411-2428.
  • 99. Yang J., Bei J., Wang S.: Enhanced cell affinity of poly (d,l-lactide) by combining plasma treatment with collagen anchorage. Biomaterials 2002, 23, 2607-2614.
  • 100. Poźniak G., Gancarz I., Bryjak M., Tylus W.: N-butylamine plasma modifying ultrafiltration polysulfone membranes. Desalination 2002, 146, 293-299.
  • 101. Nie F.Q., Xu Z.K., Wan L.S., Ye P., Wu J.: Acrylonitrile-based copolymers containing reactive groups: synthesis and preparation of ultrafiltration membranes. J. Memb. Science 2004, 230, 1-11.
  • 102. Yang M.C., Tong J.H.: Loose ultrafiltration of proteins using hydrolyzed polyacrylonitrile hollow fiber. J. Memb. Science 1997, 132, 63-71.
  • 103. Ulbricht M., Belfort G.: Surface modification of ultrafiltration membranes by low temperature plasma. I. Treatment of polyacrylonitrile. J. Appl. Polym. Science 1995, 55, 1707-1723.
  • 104. Zhi-Ping Z., Jiding L., Dan-Xia Z., Cui-Xian C.: Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: I. Graft of acrylic acid in gas. J. Memb. Science 2004, 232, 1-8.
  • 105. Tsutsui N., Takao S., Murase I.: Process for producting polyacrylonitrile reverse osmosis membranes. US Patent 4283359 1981.
  • 106. Sanchis M.R., Calvo O., Fenollar O., Garcia D., Balart R.: Characterization of the surface changes and the aging effects of low-pressure nitrogen plasma treatment in a polyurethane film. Polymer Testing 2008, 27, 75-83.
  • 107. Ozdemir Y., Hasirci N.: Oxygen plasma modification of polyurethane membranes. Journal of Materials Science: Materials in Medicine 2002, 13, 1147-1152.
  • 108. Zheludkevich M.L., Serra R., Grundmeier G., Yang L.H., Ferreira M.G.S.: Barrier properties of polyurethane coil coatings treated by microwave plasma polymerization. Surface & Coatings Technology 2006, 200, 4040-4049.
  • 109. Gray J.E., Norton P.R., Griffiths K.: Surface modification of a biomedical poly(ether)urethane by a remote air plasma. Appl. Surf. Science 2003, 217, 210-222.
  • 110. Vilani C., Weibel D.E., Zamora R.R.M., Habert A.C., Achete C.A.: Study of the influence of the acrylic acid plasma parameters on silicon and polyurethane substrates using XPS and AFM. Appl. Surf. Science 2007, 254, 131-134.
  • 111. Weibel D.E., Vilani C., Habert A.C., Achete C.A.: Surface modification of polyurethane membranes using acrylic acid vapour plasma and its effects on the pervaporation processes. J. Memb. Science 2007, 293, 124-132.
  • 112. Zhou C., Yi Z.: Blood-compatibility of polyurethane/liquid crystal composite membranes. Biomaterials 1999, 20, 2093-2099.
  • 113. Krüger P., Knes R., Friedrich J.: Surface cleaning by plasma-enhanced desorption of contaminants (PEDC). Surf. Coat. Technol. 1999, 112, 240-244.
  • 114. Alibeik S., Rizkalla A.S., Mequanint K.: The effect of thiolation on the mechanical and protein adsorption properties of polyurethanes. Europ. Polym. J. 2007, 43, 1415-1427.
  • 115. Wang C., Chen J-r, Li R.: Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation. Appl. Surf. Science 2007, 253, 4599-4606.
  • 116. Wang C., Chen J-r, Li R.: Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma. Appl. Surf. Science 2008, 254, 2882-2888.
  • 117. Inagaki N.: Surface modification of ethylene-co-tetrafluoroethylene copolymer (ETFE) by plasma. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2003, 208, 277-280.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0065-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.