PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oxidation of the AlSi6Cu4 alloy and AlSi6Cu4-graphite particles composite at the elevated temperatures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oxidation process of AlSi6Cu4 alloy as a composite matrix and of AlSi6Cu4 / 8 vol.% graphite particles composite was investigated. Composites were prepared by stirring method for suspension obtaining and by squeeze casting of the suspension. This process was examined by testing specimens annealed during up to 1000 hours at 573 K and 673 K in air atmosphere. The average oxidation state, oxide layer thickness and hardness of examined materials were measured during the annealing time. Obtained results imply the following conclusions: composite oxidizes faster than matrix alloy at both temperatures what is confirmed by higher weight gains and thicker oxide layer. The rate of oxidation of both materials gradually slows down at both temperatures. At initial stages of annealing at 673 K the rate of oxidation of both materials is much higher than that at 573 K. With increasing time of annealing the ratio of oxidation rate at 673 K to the one at 573 K comes down. Hardness of the composite is lower than that of matrix alloy before and during annealing at both temperatures. Drop in hardness at both 573 K and 673 K is the same for matrix and composite, and after about 100 hours the hardness no longer descents.
Rocznik
Strony
61--64
Opis fizyczny
Bibliogr. 10 poz., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
  • Department of Foundry, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland, konopka@mim.pcz.czest.pl
Bibliografia
  • [1] Nam H. W., Han K. S., Creep rupture life prediction of short fibre reinforced metal matrix composites. Metallurgical and Materials Transaction A, vol. 29A (1998) p.1983.
  • [2] Wu S. Q., Wei Z. S., Tjong S. C., The mechanical and thermal expansion behaviour of an AlSi Alloy composite reinforced with potassium titanate whisker, Composite Science and Technology, vol. 60 (2000) 2873.
  • [3] Badini C., Puppo D., Role of Al2O3 fibres in thermal treatment of 2014-Al2O3 composite. Science and Engineering of Composite Materials, Vol. 8 (1999) 343.
  • [4] Jung H. K., Kang C. G., Reheating process of cast and wrought alloys for thixoforging and their globularization mechanism. Journal of Materials Processing Technology, vol. 104 (2000) 244.
  • [5] Nieh T. G., Creep rupture of a silicon carbide reinforced aluminium composite. Metallurgical Transaction A, vol. 15A (1984) 139.
  • [6] Perez P., Lopez M. F, Jimenez J. A., Adeva P., Oxidation behaviour of Al-alloyed ZrSi2 at 7000C, Intermetallics Vol. 8 (2000) 1393.
  • [7] Kumar K. S. In: Westbrook J. H., Fleischer R. L., editors. Intermetallics compounds, principles and practice, vol. 2. John Wiley and Sons, Chichester (1995) 211 .
  • [8] Brandl W., Grabke H. J., Toma D.,Kruger J., The oxidation behaviour of sprayed McrAlY coatings, Surface and coating Technology, vol. 86 (1996).
  • [9] Wolff E. G., Min B. K., Kural M. H., Thermal cycling of a unidirection graphite-magnesium composite. Journal Materials Science, vol. 20 (1985) 1141.
  • [10] Neite G., Mielke S.: Thermal expansion and dimensional stability of alumina fibre reinforced aluminium alloys. Material Science Engineering A, vol. 148, (1991) 85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0063-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.