PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Eutectic solidification as explained by the thermodynamics of irreversible processes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The grain size diameter is the main parameter characterizing a given metallic alloy. In the case of Al-Si or Fe-C eutectic alloy the average inter-lamellar spacing is a good parameter which seems to be adequate to describe this irregular structure. To define the average inter-lamellar spacing the regular areas within generally irregular structure has been distinguished. It has been postulated that the formation of regular structure could be related to the minimum entropy production criterion. From the other side the maximum destabilization of the non-faceted phase interface could be referred to marginal stability. The criterion of minimum entropy production allows to formulate the growth law for regular lamellar structure solidifying under stationary state. It defines the regular eutectic spacing versus growth rate. The marginal stability concept allows to define the maximum wavelength which can be developed at the solid / liquid interface of non-faceted (Al) phase. It defines the maximum spacing within irregular structure taking into account the wavelength of instability (marginal stability) created at the non-faceted phase interface. An average inter-lamellar spacing results from the relationship formulated on the basis of both spacings. It should be emphasized that both conditions (criteria) are deduced from the thermodynamics of irreversible processes. The simplified scheme of irregular structure incorporates, additionally the intermediate lamella of faceted phase that is also taken into account in the definition of average inter-lamellar spacing, [...] . The intermediate morphology existing between two distinguished distances is treated as being under oscillation between stationary state and marginal stability. The state of marginal stability is defined by a vanishing excess entropy production. Therefore, it is suggested that the structural oscillation takes place between an attractor and point of bifurcation in the system.
Rocznik
Strony
113--116
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
Bibliografia
  • [1] T. Sato, Y. Sayama, Completely and Partially Co-operative Growth of Eutectics, Journal of Crystal Growth, vol. 22 (1974) 259-271.
  • [2] B. Toloui, A. Hellawell, Phase Separation and Undercooling in Al-Si Eutectic Alloy - The Influence of Freezing Rate and Temperature Gradient, Acta Metallurgica, vol. 24 (1976) 563-573.
  • [3] D. J. Fisher, W. Kurz, A Theory of Branching Limited Growth of Irregular Eutectics, Acta Metallurgica, vol. 28 (1980) 777-794.
  • [4] H. Jones, W. Kurz, Relation of Interphase Spacing and Growth Temperature to Growth Velocity in Fe-C and Fe-Fe3C Eutectic Alloys, Zeitschrift fur Metallkunde, vol. 72 (1981) 792-797.
  • [5] R. Elliott, S. M. D. Glenister, The Growth Temperature and Inter-flake Spacing in Aluminium Silicon Eutectic Alloys, Acta Metallurgica, vol. 28 (1980) 1489-1494.
  • [6] E. Fraś, Theoretical Basis of the Grain Growth of Irregular Eutectics, Archiwum Hutnictwa, vol. 29 (1984) 80-93.
  • [7] L. M. Hogan, H. Song, Inter-particle Spacings and Undercoolings in Al-Si Eutectic Microstructures, Metallurgical Transactions, vol. 18A (1987) 707-713.
  • [8] P. Magnin, W. Kurz, An Analytical Model of Irregular Eutectic Growth and its Application to Fe-C, Acta Metallurgica, vol. 35 (1987) 1119-1128.
  • [9] J. Liu, Y. Zhou, B. Shang, Lamellar Eutectic Stable Growth - I. Modeling, Acta Metallurgica and Materialia, vol. 38 (1990) 1625-1630.
  • [10] P. Magnin, R. Trivedi, Eutectic Growth: A Modification of the Jackson and Hunt Theory, Acta Metallurgica and Materialia, vol. 39 (1991) 453-467.
  • [11] P. Magnin, J. T. Mason, R. Trivedi, Growth of Irregular Eutectics and the Al-Si System, Acta Metallurgica and Materiallia, vol. 39 (1991) 469-480.
  • [12] H. A. H. Steen, A. Hellawell, The Growth of Eutectic Silicon - Contributions to Undercooling, Acta Metallurgica, vol. 23 (1975) 529-535.
  • [13] E. Guzik, D. Kopyciński, Modeling Structure Parameters of Irregular Eutectic Growth: Modification of Magnin - Kurz Theory, Metallurgical and Materials Transactions, vol. 37A (2006) 3057-3067.
  • [14] P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, Ed. John Wiley & Sons, London- New York - Sydney - Toronto, 1971, 306 pages.
  • [15] W. Wołczyński, Concentration Micro-field for Lamellar Eutectic Growth, Defects and Diffusion in Semiconductors, vol. 272, (2007), 123-138.
  • [16] D. I. Popov, L. L. Regel, W. R. Wilcox, Application of the theorem of minimum entropy production to growth of lamellar eutectics with an oscillating freezing rate, Journal of Crystal Growth, vol. 209 (2000) 181-197.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0062-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.