PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Proteins and peptides identification from MS/MS data in proteomics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Protein identification in biological samples is the most important task in proteomics. In the past decade, mass spectrometry (MS) became the method of choice for the identification of proteins. The purpose of this paper is to give an overview of MS-based protein identification methods, discuss their advantages and limitations and to highlight some recent advancements in this field.
Twórcy
autor
autor
  • Institute of Radioelectronics, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland, lraczyn@ire.pw.edu.pl
Bibliografia
  • 1. O'Farrell P. H.: High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975, 250, 4007-4021.
  • 2. Witkiewicz Z.: Introduction to Chromatography (in Polish). WNT, Warszawa 1995.
  • 3. Luger P.: Modern X-Ray analysis on single crystals (in Polish). PWN, Warszawa 1989.
  • 4. Hoffman E., Charette J., Stroobant V.: Mass spectrometry (in Polish). WNT, Warszawa, 1998.
  • 5. Fenn J. B., Mann M., Meng C. K., Wong S. F. ,Whitehouse C. M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64-71.
  • 6. Karas M., Hillenkamp F.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299-2301.
  • 7. Paul W., Steinwedel H.: A new mass spectrometer without magnetic field. Z. Naturforsch. 1953, 8a, 448-450.
  • 8. Paul W., Reinhard P., Zahn O.: The electric mass filter as mass spectrometer and isotope separator. Z. Phys. 1958, 152, 143-182.
  • 9. Stephens W. E.: A pulsed mass spectrometer with time dispersion. Phys. Rev. 1946, 69, 691.
  • 10. Makarov A.: Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 2000, 72, 1156-1162.
  • 11. Sommer H., Thomas H. A., Hipple J. A.: Measurement of e/m by cyclotron resonance. Phys. Rev. 1951, 82, 697-702.
  • 12. Pappin D. J., Hojrup P., Bleasby A. J.: Rapid identification of proteins by peptide-mass fingerprinting. Current Biology 1993, 3, 327-332.
  • 13. Jennings K. R.: Collision-induced decompositions of aromatic molecular ions. Int. J. Mass Spectrom. Ion Phys. 1968, 1, 227-235.
  • 14. Mabud M. A., Dekrey M. J., Cooks R. G.: Surface-induced dissociation of molecularions. Int. J. Mass Spectrom. Ion Proc. 1985, 67, 285-294.
  • 15. Zubarev R. A., Kelleher N. K., McLafferty F. W.: Electron capture dissociation of multiply charged protein cations: a nonergodic process. J. Am. Chem. Soc. 1998, 120, 3265-3266.
  • 16. Syka J. E. P., Coon J. J., Schroeder M. J., Shabanowitz J., Hunt D. F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA 2004, 101, 9528-9533.
  • 17. Little D. P., Spier J. P., Senko M. W., O'Conner P. B., McLafferty F. W.: Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal. Chem. 1994, 66, 2809-2815.
  • 18. Roepstorff P., Fohlman J.: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 1984, 11, 601.
  • 19. Eng J. K. et al.: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994, 5, 976-989.
  • 20. Perkins D. N. et al.: Probability-based protein identification by searching sequence database using mass spectrometry data. Electrophoresis 1999, 20, 3551-3567.
  • 21. Bafna V., Edwards N.: SCOPE: a probabilistic model for scoring tandem mass spectra against a peptide database. Bioinformatics 2001, 17, S13-S21.
  • 22. Wan Y. et al.: PepHMM: a hidden Markov model based scoring function for mass spectrometry database search. Recomb. 2005, 342-356.
  • 23. Colinge J. et al.: OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 2003, 3, 1454-1463.
  • 24. Zhang N. et al.: ProbID: A probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data. Proteomics 2002, 2, 1406-1412.
  • 25. Geer L. Y. et al.: Open mass spectrometry search algorithm. J. Proteome Res. 2004, 3, 958-964.
  • 26. Ma B. et al.: PEAKS: powerful software for peptide de novo sequencing by MS/MS. Rapid Commun. Mass Spectrom. 2003, 17, 2337-2342.
  • 27. Frank A., Pevzner, P.: Pepnovo: de novo peptide sequencing via probabilistic network modeling. Anal. Chem. 2005, 77, 964-973.
  • 28. Taylor J. A., Johnson R.S.: Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal. Chem. 2001, 73, 2594-2604.
  • 29. Dancik V. et al.: De novo peptide sequencing via tandem mass-spectrometry. J. Comput. Biol. 1999, 6, 327-342.
  • 30. Skilling J. et al.: ProbSeq - a fragmentation model for interpretation of electrospray tandem mass spectrometry data. Comp. Func. Genom. 2004, 5, 61-68.
  • 31. Fischer B. et al.: NovoHMM: a hidden Markov model for de novo peptide sequencing. Anal. Chem. 2005, 77, 7265-7273.
  • 32. Huang L. et al.: Functional assignment of the 20 S proteasome from Trypanosoma brucei using mass spectrometry and new bioinformatics approaches. J. Biol. Chem. 2001, 276, 28327-28339.
  • 33. Mackey A. J. et al.: Getting more for less: algorithms for rapid protein identification with multiple short peptide sequences. Mol. Cell. Proteomics 2002, 1, 139-147.
  • 34. Searle B.C. et al.: High-throughput identification of proteins and unanticipated sequence modifications using a mass-based alignment algorithm for MS/MS de novo sequencing results. Anal. Chem. 2004, 76, 2220-2230.
  • 35. Tabb D. L., Saraf A. and Yates J. R.: GutenTag: high-throughput sequence tagging via an empirically derived fragmentation model. Anal. Chem. 2003, 75, 6415-6421.
  • 36. Han Y. et al.: SPIDER: software for protein identification from sequence tags with de novo sequencing error. J. Bioinform. Comput. Biol. 2005, 3, 697-716.
  • 37. Halligan B. D. et al.: DeNovoID: a web-based tool for identifying peptides from sequence and mass tags deduced from de novo peptide sequencing by mass spectroscopy. Nucleic Acids Res. 2005, 33, 376-381.
  • 38. Mujezinovic N. et al.: Cleaning of raw peptide MS/MS spectra: Improved protein identification following deconvolution of multiply charged peaks, isotope clusters, and removal of background noise. Proteomics 2006, 6, 5117-5131.
  • 39. Gentzel M. et al.: Preprocessing of tandem mass spectrometric data to support automatic protein identification. Proteomics 2003, 3, 1597-1610.
  • 40. Moore R. E., Young M. K. and Lee T. D.: Method for screening peptide fragment ion mass spectra prior to database searching. J. Am. Soc. Mass Spectrom. 2000, 11, 422-426.
  • 41. Bern M. et al.: Automatic quality assessment of peptide tandem mass spectra. Bioinformatics 2004, 20, 149-154.
  • 42. Wysocki V., Tsaprailis G., Smith L., Breci L.: Mobile and localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom. 2000, 35, 1399-1406.
  • 43. Gu C., Somogyi A., Wysocki V., Medzihradszky K.: Fragmentation of protonated oligopeptides XLDVLQ (X=L, H, K or R) by surface induced dissociation: additional evidence for the 'mobile proton' model. Analytica Chimica Acta 1999, 397, 247-256.
  • 44. Schutz F., Kapp E. A., Simpson R. J., Speed T. P.: Deriving statistical models for predicting peptide tandem MS product ion intensities. Biochemical Society Transactions 2003, Vol. 31, part 6.
  • 45. Zhang Z.: Prediction of Low-Energy Collision Induced Dissociation Spectra of Peptides. Anal. Chem. 2004, 76, 3908-3922.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0059-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.