PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Multi-stability of in-phase and anti-phase activity patterns in neural networks with inhibitory and electrical synapses

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As shown in modeling and experimental studies, network comprised of spiking cells interconnected by inhibitory and electrical synapses may express different activity patterns without any change of the network topology or parameters. In this study we confirm robust-ness of this phenomenon by demonstrating multi-stability of hybrid networks consisting of biological neurons of different types. Moreover we show here, using relaxation oscillator model cells, that multi-stability of in-phase (IP) and anti-phase (AP) patterns may be expressed in a network fully connected by instantaneous synaptic inhibition and electrical coupling independently of the network size. In such a network a stimulus of a given profile, consisting of depolarizing and hyperpolarizing signals sent to different subpopulations of cells, can evoke direct switching between IP and AP patterns. We also show that similar phenomenon occurs in more realistic network models with sparse connectivity. Our results suggest that transient signals if arriving in a proper time window may instantaneously reconfigure a given spatio-temporal activity pattern expressed by the network into another stable pattern without any change of the network properties.
Twórcy
autor
autor
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Ks. Trojdena 4, 02-109 warsaw, Poland, tiaza.bem@ibib.waw.pl
Bibliografia
  • 1. Hultborn H., Brownstone R.B., Toth T.I., Gossard J.P.: Key mechanisms for setting the input-output gain across the motoneuron pool. Prog. Brain Res. 2004, 143, 77-95.
  • 2. Kristan W.B. Jr., Calabrese R.L., Friesen W.O.: Neuronal control of leech behavior. Prog. Neurobiol. 2005, 76, 279-327.
  • 3. Llinas R.R.: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 1988, 242, 1654-1664.
  • 4. Marder E., Bucher D.: Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Ann. Rev. Physiol. 2007, 69, 291-316.
  • 5. Meyrand P., Simmers J., Moulins M.: Construction of a pattern-generating circuit with neurons of different networks. Nature 1991, 351, 60-63.
  • 6. Amit D.J., Brunel N.: Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 1997, 7, 237-252.
  • 7. Camperi M., Wang X.J.: A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. J. Comput. Neurosc. 1998, 5, 383-405.
  • 8. Durstewitz D., Seamans J.K.: Beyond bistability: biophysics and temporal dynamics of working memory. Neuroscience 2006, 139, 119-133.
  • 9. Goldman-Rakic P.S.: Cellular basis of working memory. Neuron 1995, 14, 477-485.
  • 10. Goldman M.S., Levine J.H., Major G., Tank D.W., Seung H.S.: Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cereb Cortex 2003, 13, 1185-1195.
  • 11. Renart A., Song P., Wang X.J.: Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 2003, 38, 473-485.
  • 12. Zhang K.: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosc. 1996, 16, 2112-2126.
  • 13. Van Vreeswijk C., Abbott L.F., Ermentrout G.B.: When inhibition not excitation synchronizes neural firing. J. Comput. Neurosc. 1994, 1, 313-321.
  • 14. Lewis T.J., Rinzel J.: Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J. Comput. Neurosc. 2003, 14, 283-309.
  • 15. Bem T., Rinzel J.: Short duty cycle destabilizes a half-center oscillator, but gap junctions can restabilize the anti-phase pattern. J. Neurophysiol. 2004, 91, 693-703.
  • 16. Bem T., Le Feuvre Y., Rinzel J., Meyrand P.: Electrical coupling induces bistability of rhythms in networks of inhibitory spiking neurons. Eur. J. Neurosc. 2005, 22, 2661-2668.
  • 17. Bem T., Meyrand P., Branchereau P., Hallam J.: Multi-Stability and Pattern-Selection in Oscillatory Networks with Fast Inhibition and Electrical Synapses. PLoS ONE 2008,3(11), e3830. doi:10.1371/journal.pone.0003830
  • 18. Delpy A., Allain A.E., Meyrand P., Branchereau P.: NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron. J. Physiol. 2008, 586, 1059-1075.
  • 19. Meyrand P., Simmers J., Moulins M.: Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system. J. Neurosc. 1994, 14, 630-644.
  • 20. Robertson R.M., Moulins M.: A corollary discharge of total foregut motor activity is monitored by a single interneurone in the lobster Homarus gammarus. J. Physiol. (Paris) 1981, 77, 823-827.
  • 21. Sharp A.A., Skinner F.K., Marder E.: Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits. J. Neurophysiol. 1996, 76, 867-883.
  • 22. Merriam E.B., Netoff T.I., Banks M.I.: Bistable network behavior of layer I interneurons in auditory cortex. J. Neurosc. 2005, 25, 6175-6186.
  • 23. Traub R.D., Bibbig A.: A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. J. Neurosc. 2003, 15, 2086-2093.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0059-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.