PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of ventilation mode on blood oxygenation - investigation with Polish Virtual Lungs and Italian Model of Circulation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Positive alveolar (PA) and thoracic (Pr) pressures during artificial ventilation disturb pulmonary circulation, and might influence arterial blood oxygenation (PaO2). Initial analysis of such influence of different artificial ventilation modes is the goal of this paper. Previously elaborated virtual respiratory system (IBIB PAS, Warsaw, Poland) and cardiovascular system model (ICP CNR, Rome, Italy) were connected with two files-buffers to work as one virtual cardio-pulmonary system. Dependence of PaO2 on two methods (continuous inspiratory airflow (VCV) or pressure (PCV)), two ventilatory frequencies (fV = 15 or 7.5/min), and two values of the minute ventilation (Vmin = 6 or 8L/min) was investigated. Perfusion dependence on gravity was neglected as the virtual patient was in the supine position. Simulations showed that when fV = 15/min, neither the used method nor Vmin influence pulmonary blood flow significantly, whereas they influence the flow during expiration when fV = 7.5 (blood flow falls more for PCV and Vmin = 8 L/min). Vmin more significantly influences alveolar partial pressure of oxygen (P02) when fV = l5/min. P02 was greater for PCV. As effects on the flow and PO2 were contradictory, Pa02 was almost independent of the used method and fV. It depended on Vmin more significantly if fV = 15/min.
Twórcy
autor
autor
autor
  • Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Ks. Trojedna 4, 02-109 Warsaw, Poland, tgol@ibib.waw.pl
Bibliografia
  • 1. Gólczewski T.: Gas exchange in virtual respiratory system - simulation of ventilation without lungs movement. Int. J. Artif. Organs 2007, 30, 1047-1056.
  • 2. Beyar R., Goldstein Y.: Model studies of the effects of the thoracic pressure on the circulation. Ann. Biomed. Eng. 1987, 15, 373-383.
  • 3. Abraham E., Yoshihara G.: Cardiorespiratory effects of pressure controlled ventilation in severe respiratory failure. Chest 1990, 98, 1445-1449.
  • 4. Al-Saady N., Bennett E.D.: Decelerating inspiratory flow waveform improves lung mechanics and gas exchange in patients on intermittent positive-pressure ventilation. Inten. Care Med. 1985, 11, 68-75.
  • 5. Alvarez A., Subirana M., Benito S.: Decelerating flow ventilation effects in acute respiratory failure. J. Crit. Care 1998, 13(1), 21-25.
  • 6. Gólczewski T., Kozarski M., Darowski M.: The respirator as a user of virtual lungs. Biocybernetics and Biomedical Engineering 2003, 23, 57-66.
  • 7. Gólczewski T., Darowski M.: Virtual respiratory system for education and research: simulation of expiratory flow limitation for spirometry. Int. J. Artif. Organs 2006, 29, 961-72.
  • 8. Gólczewski T, Darowski M.: Virtual respiratory system in investigation of CPAP influence on optimal breathing frequency in obstructive lungs disease. Nonlinear Biomed. Phys. 2007, 1, 6.
  • 9. Tomalak W., Peslin R., Duvivier C.: Respiratory tissue properties derived from flow transfer function in healthy humans. J. Appl. Physiol. 1997, 82, 1098-1106.
  • 10. Ferrari G., De Lazzari C., Mimmo R., Tosti G., Ambrosi D.: A modular numerical model of the cardiovascular system for studying and training in the field of cardiovascular physiopathology. J. Biomed. Eng. 1992, 14, 91-107.
  • 11. Ferrari G., De Lazzari C., de Kroon T.L., Elstrodt J.M., Rakhorst G., Gu Y.J.: Numerical simulation of hemodynamic changes during beating heart surgery: analysis of the effects of cardiac position alteration in an animal model. Artif. Organs 2007, 31(1), 73-79.
  • 12. Kozarski M., Ferrari G., Zielinski K., Górczyńska K., Palko K.J., Tokarz A., Darowski M.: A new hybrid electro-numerical model of the left ventricle. Comput. Biol. Med. 2008, 38(9), 979-89.
  • 13. Sagawa K., Maughan L., Suga H., Sunagawa K.: Cardiac contraction and the Pressure-Volume Relationship. Oxford University Press, New York 1988.
  • 14. Gilbert J.C., Glantz S.A.: Determinants of left ventricular filling and of the diastolic pressure-volume relation. Circ. Res. 1989, 64, 827-852.
  • 15. De Lazzari C., Darowski M., Ferrari G., Clemente F., Guaragno M.: Computer simulation of haemodynamic parameters changes with left ventricle assist device and mechanical ventilation. Comput. Biol. Med. 2000, 30(2), 55-69.
  • 16. Recommendations of the European Alliance for Medical and Biological Engineering and Science for the 7th Framework Program of the European Commission. EAMBES Documents, March 2006.
  • 17. Fitz-Clarke J.R.: Computer simulation of human breath-hold diving: cardiovascular adjustments. Eur. J. Appl. Physio.l 2007, 100, 207-224.
  • 18. Corno C., Fiore G.B., Costantino M.L.: A mathematical model of neonatal tidal liquid ventilation integrating airway mechanics and gas transfer phenomena. IEEE Trans Biomed. Eng. 2004, 51, 604-611.
  • 19. Niranjan S.C., Bidani A., Ghorbel F., et al.: Theoretical Study of Inspiratory Flow Waveforms during Mechanical Ventilation on Pulmonary Blood Flow and Gas Exchange. Comp. Biomed. Res. 1999, 32, 355-390.
  • 20. Winkler T., Krause A., Kaiser S.: Simulation of mechanical respiration using a multicompartment model for ventilation mechanics and gas exchange. Int. J. Clin. Mon. Comp. 1995, 12, 231-239.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0059-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.