PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Circulatory models are relevant for research, education and testing of prosthetic devices/components. Independently of its structure that can be numerical, physical or hybrid the models can be used in different areas of cardiovascular pathophysiology. However, the models are often used to reproduce specific circulatory conditions instead of being used as 'systemic' tools. That is to say, the models are used to evaluate the global effects of external disturbances such as pathologies, therapies, special environments or surgery on the circulatory system. Aim of this paper is to illustrate a family of circulatory models developed to represent the whole circulatory system in pathophysiological conditions describing some of the possible applications.
Twórcy
autor
autor
autor
autor
  • Instituto di Fisiologia Clinica CNR - Sezione di Roma, CNR, Via San Martino della Battaglia 44, 00185 Roma, Italy, gfr.ferrari@ifc.cnr.it
Bibliografia
  • 1. Smith B., Barnea O., Moore T.V., Jaron D.: Optimal control system for the intra-aortic balloon pump. Med. Biol. Eng. Comput. 1991, 29, 2, 180–184.
  • 2. Pontrelli G.: A multiscale approach for modelling wave propagation in an arterial segment. Comput. Methods Biomech. Biomed. Eng. 2004, 7, 2, 79–89.
  • 3. Burkhoff D., Alexander J. Jr., Schipke J.: Assessment of Windkessel as a model of aortic input impedance. Am. J. Physiol. 1988, 255, H742–53.
  • 4. Geertsema A.A., Rakhorst G., Mihaylov D., Blanksma P.K., Verkerke G.J.: Development of a numerical simulation model of the cardiovascular system. Artif. Organs. 1997, 21, 12, 1297–1301.
  • 5. Zhou J., Armstrong G.P., Medvedev A.L., Smith W.A., Golding L.A., Thomas J.D.: Numeric modelling of the cardiovascular system with a left ventricular assist device. ASAIO J. 1999, 45, 1, 83–89.
  • 6. Heldt T., Shim E.B., Kamm R.D., Mark R.G.: Computational modelling of cardiovascular response to orthostatic stress. J. Appl. Physiol. 2002, 92, 3, 1239–1254.
  • 7. Rosenberg G., Phillips V.M., Landis D.L., Pierce W.S.: Design and evaluation of the Pennsylvania State University mock circulatory system. ASAIO Journal. 1981, 4, 41–49.
  • 8. Bowles C.T., Shah S.S., Nishimura K., Clark C., Cumming D.V., Pattison C.W., Pepper J.R., Yacoub M.H.: Development of mock circulation models for the assessment of counter pulsation systems. Cardiovasc. Res. 1991, 25, 11, 901–908.
  • 9. Schima H., Baumgartner H., Spitaler F., Kuhn P., Wolner E..: A modular mock circulation for hydromechanical studies on valves, stenoses, vascular grafts and cardiac assist devices. Int. J. Artif. Organs. 1992, 15, 2, 417–421.
  • 10. Avolio A.P.: Multi-branched model of the human arterial system. Med. Biol. Eng. Comput. 1980, 18, 6, 709–718 .
  • 11. Ferrari G., De Lazzari C., de Kroon T.L., Elstrodt J.M., Rakhorst G., Gu Y.J.: Numerical simulation of hemodynamic changes during beating heart surgery: analysis of the effects of cardiac position alteration in an animal model. Artificial Organs. 2007, 31, 1, 73–79.
  • 12. Sagawa K., Maugham L., Suga H., Sunagawa K.: Cardiac contraction and the Pressure-Volume Relationship. Oxford University Press. 1988, New York.
  • 13. Ferrari G., De Lazzari C., Mimmo R., Tosti G., Ambrosi D.: A modular numerical model of the cardiovascular system for studying and training in the field of cardiovascular physiopathology. J. Biomed. Eng. 1992, 14, 2, 91–107.
  • 14. Ferrari G., De Lazzari C., Mimmo R., Tosti G., Ambrosi D., Górczyńska K.: A computer controlled mock circulatory system for mono and biventricular assist device testing. Int. J. Artif. Organs. 1998, 21, 1, 26–36.
  • 15. Ferrari G., Kozarski M., De Lazzari C., Górczyńska K., Tosti G., Darowski M.: Development of a hybrid (numerical-hydraulic) circulatory model: prototype testing and its response to IABP assistance. Int. J. Artif. Organ. 2005, 28, 7, 750–759.
  • 16. Ferrari G., Górczyńska K., Mimmo R., De Lazzari C., Clemente F., Tosti G., Guaragno M.: Mono and bi-ventricular assistance: their effect on ventricular energetics. Int. J. Artif. Organs. 2001, 24, 6, 380–391.
  • 17. Ferrari G., De Lazzari C., Bedini R.: The use of digital computer models of the circulation to simulate the effects of breath-hold diving on hemodynamics: definition of the circulatory model and first results. Blue 2005. Human Behaviour in Underwater Environment. CNR Institute of Clinical Physiology, Pisa, Italy. 2005, December 1–4.
  • 18. Ferrari G., Kozarski M., De Lazzari C., Clemente F., Merolli M., Tosti G., Guaragno M., Mimmo R., Ambrosi D., Głapinski J.: A hybrid (numerical-physical) model of the left ventricle. Int. J. Artif. Organs. 2001, 24, 7, 456–462.
  • 19. Ferrari G., De Lazzari C., Kozarski M., Clemente F., Górczyńska K., Mimmo R., Monnanni E., Tosti G., Guaragno M.: A hybrid (numerical-physical) mock circulatory system prototype: testing in physiological and pathological conditions. ASAIO J. 2002, 48, 5, 487–494.
  • 20. Kozarski M., Ferrari G., Clemente F., Górczyńska K., De Lazzari C., Darowski M., Mimmo R., Tosti G., Guaragno M.: A hybrid mock circulatory system: development and testing of an electro-hydraulic impedance simulator. Int. J. Artif. Organs. 2003, 26, 1, 53–63.
  • 21. Ferrari G., Kozarski M., De Lazzari C., Górczyńska K., Mimmo R., Guaragno M., Tosti G., Darowski M.: Modelling of cardiovascular system: development of a hybrid (numerical-physical) model. Int. J. Artif. Organs. 2003, 26, 12, 1104–1114.
  • 22. Ferrari G., Kozarski M., Gu Y.J., De Lazzari C., Di Molfetta A., Palko K.J., Zieliński K., Górczyńska K., Darowski M., Rakhorst G.: Application of a user friendly comprehensive circulatory model for hemodynamic and ventricular variables estimate. Int. J. Artif. Organs. 2008, 31, 12, 1043–1054.
  • 23. Darowski M., De Lazzari C., Ferrari G., Clemente F.: The influence of simultaneous intra-aortic balloon pumping and mechanical ventilation on hemodynamic parameters – numerical simulation. Frontiers of Med. and Biol. Eng. 1999, 9, 2, 155–174.
  • 24. De Lazzari C., Darowski M., Ferrari G., Clemente F., Guaragno M.: Computer simulation of haemodynamic parameters changes with left ventricle assist device and mechanical ventilation. Comp. Biol. Med.. 2000, 30, 2, 55–69.
  • 25. Ferrari G., De Lazzari C., Mimmo R., Tosti G., Ambrosi D.: A mock circulatory system for in vitro reproduction of the left ventricle, the arterial tree and their interaction with a left ventricle assist device. J. Med. Eng. & Technol.. 1994, 18, 3, 87–95.
  • 26. Mandarino W.A., Winowich S., Gorcsan J. III, Gasior T.A., Pham S.M., Griffith B.P., Kormos R.L.: Right ventricular performance and left ventricular assist device filling. Ann. Thorac. Surg. 1997, 63, 1044–1049.
  • 27. Farrar D.J., Hill J.D., Pennington D.G., McBride L.R., Holman W.L., Kormos R.L., Esmore D., Gray L.A. Jr., Seifert P.E., Schoettle G.P., Moore C.H., Hendry P.J., Bhayana J.N.: Preoperative and postoperative comparison of patients with univentricular and biventricular support with the Thoratec ventricular assist device as a bridge to cardiac transplantation. J. Thorac. Cardiovasc. Surg. 1997, 113, 202–209.
  • 28. Kinoshita M., Long J.W. Jr., Pantalos G., Burns G.L., Olsen D.B.: Hemodynamic influence of LVAD on right ventricular failure. ASAIO Trans. 1990, 36, M538-M541.
  • 29. Fukamachi K., Asou T., Nakamura Y., Toshima Y., Oe M., Mitani A., Sakamoto M., Kishizaki K., Sunagawa K., Tokunaga K.: Effects of left heart bypass on right ventricular performance. Evaluation of the right ventricular end-systolic and end-diastolic pressure-volume relation in the in situ normal canine heart. J. Thorac. Cardiovasc. Surg. 1990, 99, 4, 725–734.
  • 30. Ferrari G., Nicoletti A., De Lazzari C., Clemente F., Tosti G., Guaragno M., Mimmo R., Ambrosi D., Górczyńska K.: A physical model of human systemic arterial tree. Int. J. Artif. Organs. 2000, 23, 9, 647–657.
  • 31. Vandenberghe S., Segers P., Steendijk P., Meyns B., Dion R.A., Antaki J.F., Verdonck P.: Modelling ventricular function during cardiac assist: does time-varying elastance work? 2006, ASAIO J., 52, 1, 4–8.
  • 32. Grundeman P.F., Borst C., van Herwaarden J.A., Verlaan C.W., Jansen E.W.: Vertical displacement of the beating heart by the octopus tissue stabilizer: influence on coronary flow. Ann. Thorac. Surg. 1998, 65, 5, 1348–1352.
  • 33. Ferrari G., Kozarski M., De Lazzari C., Górczyńska K., Darowski M., Tosti G.: Development of hybrid (numerical-physical) models of the cardiovascular system: numerical-electrical and numerical-hydraulic applications. Biocyber. Biomed. Eng. 2005, 25, 4, 3–15.
  • 34. Gólczewski T., Darowski M.: Virtual respiratory system for education and research: simulation of expiratory flow limitation for spirometry. Int. J. Artif. Organs. 2006, 29, 10, 961–972.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0059-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.