PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Correction of anisotropy coefficient in original Henyey Greenstein phase function for Monte Carlo simulations of light transport in tissue

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, two different methods for calculation of polar deflection angle are compared. The scattering angle is defined by numerical inversion of cumulative distribution of the original Henyey-Greenstein phase function. Results of the Monte Carlo simulations obtained in this manner are compared with results of simulations in which the analytical inversion of the probability density for the cosine of the deflection angle is applied. Investigations are carried out for media with optical properties similar to these typical for living tissues as well for very small source detector separations (50-500 [\mi]m), i.e. in conditions, in which the diffusion theory can not be applied. The distributions of visiting probability of photons penetrating into the semi-infinite medium are obtained for various methods of phase function calculation. It can be observed that the methods of calculation of polar deflection angle influence significantly spatial distributions of reflectance and visiting probability obtained by Monte Carlo simulations. The approximated transformation of the anisotropy coefficient used in simulations carried out with the use of the original Henyey-Greenstein function to effective anisotropy coefficient is presented; that makes possible comparisons of the results of Monte Carlo simulations obtained by using different methods.
Twórcy
autor
  • Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland, norbert@ibib.waw.pl
Bibliografia
  • 1. Maarek J.M., Jarry G., Cosnac B. d., Lansiart A., Mong H.B.: A simulation method for the study of laser transillumination of biological tissues. Ann. Biomed. Eng. 1984, 12, 3, 281-304.
  • 2. Flock S.T., Patterson M.S., Wilson B.C., Wyman D.R.: Monte carlo modeling of light propagation in highly scattering tissue--i: Model predictions and comparison with diffusion theory, IEEE Trans. Biomed. Eng. 1989, 36, 12, 1162-1168.
  • 3. Okada E., Firbank M., Schweiger M., Arridge S.R., Cope M., Delpy D.T.: Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl. Opt. 1997, 36, 21-31.
  • 4. Steinbrink J., Wabnitz H., Obrig H., Villringer A., Rinneberg H.: Determining changes in nir absorption using a layered model of the human head. Phys. Med. Biol. 2001, 46, 879-896.
  • 5. Mul F.F. M. d., Steenbergen W., Greve J.: Doppler monte carlo simulations of light scattering in issue to support laser-doppler perfusion measurements. Technology and Health Care 1999, 7, 2-3, 71-183.
  • 6. Liebert A., Wabnitz H., Steinbrink J., Obrig H., Moller M., Macdonald R., Villringer A., Rinneberg .: Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebralabsorption changes from moments of distribution of times of flight of photons. Applied Optics 2004, 43, 15, 3037-3047.
  • 7. Bevilacqua F., Depeursinge C.: Monte carlo study of diffuse reflectance at source-detector separations close to one transport mean free path. J. Opt. Soc. Am. 1999, A 16, 12, 2935-2945.
  • 8. Kienle A., Patterson M.S.: Determination of the optical properties of turbid media from single monte carlo simulation, Phys. Med. Biol. 1996, 41, 2221-2227.
  • 9. Okada E., Delpy D.: Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer. Applied Optics 2003, 42, 16, 2906-2914.
  • 10. Pifferi A., Taroni P., Valentini G. and Anderson-Engels S.: Real-time method for fitting time resolved reflectance and transmittance measurements with a monte carlo model. Appl. Opt. 1998, 37, 13, 2774-2780.
  • 11. Swartling J., Pifferi A., Enejder A.M.K., Anderson-Engels S.: Accelerated monte carlo models to simulate fluorescence spectra from layered tissues. J. Opt. Soc. Am. 2003, 20, 4, 714-727.
  • 12. Hielscher A.H., Alcouffe R.E. and Barbour R.L.: Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. Phys. Med. Biol. 1998, 43, 1285-1302.
  • 13. Patterson M.S., Chance B., Wilson B.C.: Time resolved reflectance and transmittance for the noninvasive measurements of tissue optical properties. Appl. Opt. 1989, 28, 12, 2331-2336.
  • 14. Hyde D.E., Farrell T.J., Patterson M.S. and Wilson B.C.: A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations. Phys. Med. Biol. 2001, 46, 369-383.
  • 15. Arridge S.R., Cope M., Delpy D.T., The teoretical basis for the determination of optical pathlengths in tissue: Temporal and frequency analysis. Phys. Med. Biol. 1992, 37, 1531-1560.
  • 16. Liebert A., Wabnitz H., Obrig H., Erdmann R., Möller M., Macdonald R., Rinneberg H., Villringer A. and Steinbrink J.: Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. Neuroimage 2006, 31, 2, 600-608.
  • 17. Liebert A., Zolek N., Maniewski R.: Decomposition of a laser-doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte carlo validation study. Phys. Med. Biol. 2006, 51, 5737-5751.
  • 18. Henyey L.G., Greenstein J.L.: Diffuse radiation in the galaxy. American Astronomical Society 1941, 93, 70-83.
  • 19. VanGemert M.J.C., Jacques S.L., Sterenborg J.C.M., Star W.M.: Skin optics. IEEE Trans. Biomed. Eng. 1989, 36, 12, 1146-1154.
  • 20. Jacques S., Alter C., Prahl S.: Angular dependence of helium-neon laser light scattering by human dermis. Lasers Life Sci. 1987, 4, 309-333.
  • 21. Robert C.P., Casella G.: Monte carlo statistical methods. Springer Verlag, New York, 2004.
  • 22. Binzoni T., Leung T.S., Gandjbakhche A.H., Rufenacht D., Delpy D.T.: The use of the henyey-greenstein phase function in monte carlo simulations in biomedical optics. Phys Med Biol 2006, 51, 17, N313-322.
  • 23. Żołek N.S., Liebert A., Maniewski R.: Optimization of the monte carlo code for modeling of photon migration in tissue. Computer Methods & Programs in Biomedicine 2006, 84, 50-57.
  • 24. Witt A.N.: Multiple scattering in reflection nebulae i. A Monte Carlo Approach. Astrophys. J. 1977, S35, 1-6.
  • 25. Wang L., Jacques S.L.: "Monte carlo modeling of light transport in multi-layered tissues in standard c," University of Texas Texas, 1992.
  • 26. Wang L., Jacques S.L., Zheng I.: Mcml - monte carlo modeling of light transport in multi-layered tissues, Computer Methods & Programs in Biomedicine 1995, 47, 131-146.
  • 27. Bresenham J.E.: Algorithm for computer control of a digital plotter. IBM Systems Journal 1965, 4, 1, 25-30.
  • 28. Bolin F.P., Preuss L.E., Taylor R.C., Ference R.J.: Refractive index of some mammalian tissues using a fiber optic cladding method. Applied Optics 1989, 28, 12, 2297-2303.
  • 29. Spott T.: "Characterization of layered tissue structures with diffusely propagating photon - density waves," Faculty of Electrical Engineering and Telecomunications. Department of Physical Electronics. PhD thesis, Norwegian University of Science and Technology, Trondheim 1999.
  • 30. Mourant J.R., Bigio I.J., Jack D.A., Johnson T.M., Miller H.D.: Measuring absorption coefficients in small volumes of highly scattering media: Source-detector separations for which path lengths do not depend on scattering properties. Appl. Opt. 1997, 36, 5655-5661.
  • 31. Kumar G.: Optimal probe geometry for near-infrared spectroscopy of biological tissue. Appl. Opt. 36 (1997), 2286-2293.
  • 32. Liu H.: Unified analysis of the sensitivities of reflectance and path length to scattering variations in a diffusive medium. Appl. Opt. 2001, 40, 1742-1746.
  • 33. Saager R.B., Berger A.J.: Direct characterization and removal of interfering absorption trends in two-layer turbid media. J. Opt. Soc. Am. A 2005, 22, 1874-1882.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0048-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.