PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Actuator fault tolerant control design based on a reconfigurable reference input

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The prospective work reported in this paper explores a new approach to enhance the performance of an active fault tolerant control system. The proposed technique is based on a modified recovery/trajectory control system in which a reconfigurable reference input is considered when performance degradation occurs in the system due to faults in actuator dynamics. An added value of this work is to reduce the energy spent to achieve the desired closed-loop performance. This work is justified by the need of maintaining a reliable system in a dynamical way in order to achieve a mission by an autonomous system, e.g., a launcher, a satellite, a submarine, etc. The effectiveness is illustrated using a three-tank system for slowly varying reference inputs corrupted by actuators faults.
Rocznik
Strony
553--560
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Centre de Recherche en Automatique de Nancy (CRAN), Nancy-Université, CNRS, BP 239, 54506 Vandoeuvre Cedex, France
autor
  • Centre de Recherche en Automatique de Nancy (CRAN), Nancy-Université, CNRS, BP 239, 54506 Vandoeuvre Cedex, France; ALIEN-INRIA, Lille-Saclay, France
autor
  • Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., Montreal, Quebec H3G 1M8, Canada
Bibliografia
  • [1] Blanke M., Kinnaert M., Lunze J. and Staroswiecki M. (2003). Diagnosis and Fault-Tolerant Control, Springer-Verlag, Berlin.
  • [2] D'Azzo J. and Houpis C.H. (1995). Linear Control System Analysis and Design: Conventional and Modern, 4-th Revised Edition, McGraw-Hill, New York, NY.
  • [3] Finkelstein, M. S. (1999). A note on some aging properties of the accelerated life model, Reliability Engineering and System Safety 71(1): 109-112.
  • [4] Fliess M., Lévine J., Martin P., Rouchon P. (1995). Flatness and defect of non-linear systems: Introductory theory and examples, International Journal of Control 61(6): 1327-1361.
  • [5] Gao Z., and P.J. Antsaklis (1991). Stability of the pseudo-inverse method for reconfigurable control systems, International Journal of Control 53(3): 717-729.
  • [6] Gao Z., and P.J. Antsaklis (1992). Reconfigurable control systems design via perfect model following, International Journal of Control 56(4): 783-798.
  • [7] Guenab F., Theilliol D., Weber P., Ponsart J.C. and Sauter D. (2005). Fault tolerant control method based on costs and reliability analysis, Proceedings of the 16th World IFAC Congress, Prague, Czech Republic, CD-ROM.
  • [8] Harris T.J., Seppala C., Desborough L.D. (1999). A review of performance monitoring and assessment techniques for univariate and multivariate control systems, Journal of Process Control 9(1): 1-17.
  • [9] Jiang J. (1994). Design of reconfigurable control system using eigenstructure assignments, International Journal of Control 59(2): 395-410.
  • [10] Jiang J. and Zhang Y. (2006). Accepting performance degradation in fault-tolerant control system design, IEEE Transactions on Control Systems Technology 14(2): 284-292.
  • [11] Join C., Ponsart J.-C., Sauter D. and Theilliol D. (2005). Nonlinear filter design for fault diagnosis: Application to the three-tank system, IEE Proceedings Control Theory and Applications 152(1): 55-64.
  • [12] Patton, R.J. (1997). Fault-tolerant control: The 1997 situation, Proceedings of the IFAC Symposium SAFEPROCESS, Kingston-upon-Hull, UK, 2: 1033-1055.
  • [13] Mai P., Join C. and Reger J. (2006). An example of flatness based fault tolerant control using algebraic derivative estimation, Proceedings of the Advanced Control DiagnosisWorkshop, Nancy, France, CD-ROM.
  • [14] Noura H., Sauter D., Hamelin F. and Theilliol D. (2000). Fault-tolerant control in dynamic systems: Application to a winding machine, IEEE Control Systems Magazine 20(1): 33-49.
  • [15] Rodrigues M., Theilliol D., Aberkane S. and Sauter D. (2007). Fault tolerant control design for polytopic LPV system, International Journal of Applied Mathematics and Computer Science 17(1): 27-38.
  • [16] Staroswiecki M. (2005). Fault tolerant control: The pseudoinverse method revisited, Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, CD-ROM.
  • [17] Staroswiecki M, Yang H. and Jiang B. (2007). Progressive accommodation of parametric faults in linear quadratic control, Automatica 43(2): 2070-2076.
  • [18] Theilliol D., Noura H. and Ponsart J.C. (2002). Fault diagnosis and accommodation of a three-tank system based on analytical redundancy, ISA Transactions 41(3): 365-382.
  • [19] Wu N.E., Zhang Y.M. and Zhou K (2000). Detection, estimation and accommodation of loss of control effectiveness, International Journal of Adaptive Control and Signal Processing 14(7): 775-795.
  • [20] Zhang Y.M. and Jiang J. (2002). Active fault-tolerant control system against partial actuator failures, IEE Proceedings - Control Theory and Applications 149(1): 95-104.
  • [21] Zhang Y. M. and Jiang J. (2003a). Fault tolerant control cystem design with explicit consideration of performance degradation, IEEE Transactions on Aerospace and Electronic Systems 39(3): 838-848.
  • [22] Zhang, Y.M. and Jiang J. (2003b). Bibliographical review on reconfigurable fault tolerant control systems, Proceedings of the IFAC Symposium SAFEPROCESS, Washington, D.C., USA, pp. 265-276.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0047-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.