PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined application of independent component analysis and projective filtering to fetal ECG extraction

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The maternal abdominal signals contain a few components: the dominant maternal ECG, various types of noise and the signal of the primary interest - the fetal ECG. In order to obtain the fetal ECG, the maternal signal should first be suppressed. In the paper, we propose a combined application of the independent component analysis and projective filtering of the time-aligned beats to solve the problem of the fetal ECG extraction from multi channel abdominal signals, when the number of the channels is low. The independent component analysis performs spatial decomposition of the signals. It often leads to a successful separation of the maternal and the fetal ECG. When the separation is not complete, projective filtering can be applied to enhance the partially separated maternal ECG. Then the maternal ECG contained in the respective channels can be reconstructed and subtracted from the original composite signals. This operation leads to the extraction of the fetal ECG in the respective channels. The signal can still be enhanced by the second application of the independent component analysis. The developed system operation is ilIustrated, and the results of its application are compared to the results achievable by application of the independent component analysis.
Twórcy
autor
  • Institute of Electronics, Division of Biomedical Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland, mkotas@polsl.pl
Bibliografia
  • 1. Jenkins H.M.L.: Technical progress in fetal electrocardiography-a review, J. Perinat. Med. 1986, 14, 365-370.
  • 2. Nagel J.H.: Progress in fetal monitoring by improved data acquisition, IEEE Trans. Biomed. Eng. 1984, 31, 9-13.
  • 3. Widrow B. et al.: Adaptive noise cancelling: principles and the applications, Proc. IEEE 1975, 63, 1692-1716.
  • 4. Bergveld P., Kőlling A.J., Peuscher J.H.J.: Real-Time Fetal ECG Recording, IEEE Trans. Biomed. Eng., 1986, 33, 505-509.
  • 5. Callaerts D., De Moor B., Vandewalle J., Sansen W.: Comparison of SVD methods to extract the foetal electrocardiogram from cutaneous electrode signals, Med. & Biol. Eng. & Comput. 1990, 28, 217-224.
  • 6. De Lathauwer L., Callaertr D., De Moor B., Vandevalle J.: Fetal electrocardiogram extraction by source subspace separation, Proc. IEEE SP/ATHOS Workshop on HOS, Girona, Spain, June 1995, 134-138.
  • 7. Cardoso J.-F., Souloumiac A.: Blind beamforming for non-Gaussian signals, Inst. Elect. Eng. Proc.-F. 140, 6, 362-370.
  • 8. Cardoso J.-F.: Multidimensional Independent Component Analysis, Proc. ICASSP'98, vol. IV, Seattle, WA, May 1998, 1941-1944.
  • 9. Zarcoso, Nandi A.K.: Noninvasive Fetal Electrocardiogram Extraction: Blind Separation Versus Adaptive Noise Cancellation, IEEE Trans. Biomed. Eng. 2001, 48, 12-18.
  • 10. Najafabadi F.S., Zahedi E.: Mohd Alauddin Mohd Ali, Fetal heart rate monitoring based on independent component analysis, Computers in Biology and Medicine, 2006, 36, 241-252.
  • 11. Mochimaru F., Fujimoto Y., IshikawaY.: The Fetal Electrocardiogram by Independent Component Analysis and Wavelets, Japanese Journal of Physiology, 2004, 54, 457-463.
  • 12. Crowe J.A., Harrison A., Hayes-Gill B.R.: The feasibility of long term fetal heart rate monitoring in the home environment using maternal abdominal electrodes, Physiological Measurement, 1995, 16, 195-202.
  • 13. Abboud S., Barkai G., Mashiach S., Sadeh D.: Quantification of the Fetal Electrocardiogram Using Averaging Technique., Computations in Biology & Medicine, 1990, 20, 147-155.
  • 14. Adam D., Shavit D.: Complete foetal ECG morphology recording by synchronized adaptive filtration, Medical & Biological Engineering & Computing, 1990, 28, 287-292.
  • 15. Comani S., Mantini D., Alleva G., Di Luzio S., Romani G.L.: Fetal magnetocardiographic mapping using independent component analysis, Physiological Measurement, 2004, 25, 1459-1472.
  • 16. Burghoff M., Van Leeuwen P.: Separation of Fetal and Maternal Magnetocardiographic Signals in Twin Pregnancy Using Independent Component Analysis (ICA), Neurology and Clinical Neurophysiology, 2004, November 30, 39.
  • 17. Lewis M.L.: Review of electromagnetic source investigations of the fetal heart, Medical Engineering & Physics, 2003, 25, 801-810.
  • 18. Kotas M.: Projective Filtering of the Time-Aligned ECG Beats, IEEE Trans. Biomed. Eng. 2004, 51, 1129-1139.
  • 19. Jollife I.T.: Principal Component Analysis, New York: Springer Verlag, 1986.
  • 20. Hyvärinen, Oja E.: A Fast Fixed-Point Algorithm for Independent Component Analysis, Neural Computation, 1997, 9, 1483-1492.
  • 21. Hamilton P.S., Tompkins W.J.: Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database, IEEE Trans. Biomed. Eng. 1986, 33, 1157-1165.
  • 22. Chou H.H., Chen Y.J., Shiau Y.C., Kuo T.S.: An Effective and Efficient Compression Algorithm for ECG Signals With Irregular Periods, IEEE Trans. Biomed. Eng. 2006, 53, 1198-1205.
  • 23. Kotas M.: Fetal QRS Detection - Quantitative Investigation of a Class of Algorithms, Biocybernetics and Biomedical Engineering, 1996, 16, No 3-4, 133-145.
  • 24. Kotas M.: A New Method of Fetal QRS Detection, Biocybernetics and Biomedical Engineering, 1996, 16, No 3-4, 147-163.
  • 25. Kotas M.: Independent versus Principal Component Analysis for Fetal ECG extraction, Proc. Int. Conf. SYMBIOSIS, September 11-13, Szczyrk, Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0045-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.