PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A model-based approach to the forward and inverse problems in spirometry

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The respiratory system is one of the most essential systems sustaining human life. Its complexity raises, however, serious difficulties when one is trying to analyse the lung structure or function experimentally. An alternative approach consists in conducting research via mathematical modelling. This paper reviews the most essential model-based approaches to the so-called forward and inverse problems in spirometry, focusing on research the author has been involved in. A few selected results achieved with the aid of the mathematical models of the forced expiration illustrate the state of the art, and current challenging issues in modelling the respiratory system are depicted.
Twórcy
autor
  • Chair of Electronic and Photonic Metrology, Wrocław University of Technology, B. Prusa 53/55, 50-317 Wrocław, Poland, adam.polak@pwr.wroc.pl
Bibliografia
  • 1. Paiva M., Prisk G.K., Verbanck S.: Foreword. Respir. Physiol. Neurobiol. 2005, 148, 1-2.
  • 2. Murray C.J.L., Lopez A.D.: Evidence-based health policy - lessons from the Global Burden of Disease Study. Science 1996, 274, 740-743.
  • 3. Hyatt R.E., Schilder D.P., Fry D.L.: Relationship between maximum expiratory flow and degree of lung inflation. J. Appl. Physiol. 1958, 13, 331-336.
  • 4. Fry D.L.: Theoretical considerations of the bronchial pressure-flow-volume relationships with particular reference to the maximum expiratory flow-volume curves. Phys. Med. Biol. 1958, 3, 174-194.
  • 5. Fry D.L.: A preliminary lung model for simulating the aerodynamics of the bronchial tree. Comp. Biomed. Res. 1968, 2, 111-134.
  • 6. Pardaens J., van de Woestijne K.P., Clément J.: A physical model for expiration. J. Appl. Physiol. 1972, 33, 479-490.
  • 7. Lambert R.K, Wilson T.A.: A model for the elastic properties of the lung and their effect on expiratory flow. J. Appl. Physiol. 1973, 34, 34-48.
  • 8. Dawson S.D.. Elliott E.A.: Wave-speed limitation on expiratory flow - a unifying concept. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 1977, 43, 498-515.
  • 9. Shapiro A.H.: Steady flow in collapsible tubes. J. Biomech. Eng. 1977, 99, 126-147.
  • 10. Elad D., Kamm R.D., Shapiro A.H.:. Mathematical simulation of forced expiration. J. Appl. Physiol. 1988, 65, 14-25.
  • 11. Shin J.J., Elad D., Kamm R.D.: Simulation of forced breathing maneuvers, In: M.Y. Jaffrin, C. Caro (Eds.), Biological Flow, Plenum Press, New York 1995.
  • 12. Hyatt R.E., Wilson T.A. Bar-Yishay E.: Prediction of maximal expiratory flow in excised human lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 1980, 48, 991-998.
  • 13. Lambert R.K., Wilson T.A., Hyatt R.E., Rodarte J.R.: A computational model for expiratory flow. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 1982, 52, 44-56.
  • 14. Polak A.G.: A forward model for maximum expiration. Comp. Biol. Med., 1998, 28, 613-625.
  • 15. Pardaens J., van de Woestijne K.P., Clément J.: Simulation of regional lung emptying during slow and forced expirations. J. Appl. Physiol. 1975, 39, 191-198.
  • 16. Solway J., Fredberg J.J., Ingram R.H. Jr., Pedersen O.F., Drazen J.M.: Interdependent regional lung emptying during forced expiration: a transistor model. J. Appl. Physiol. 1987, 62, 2013-1025.
  • 17. Lambert, R.K.: A new computational model for expiratory flow from nonhomogeneous human lungs. ASME Trans. J. Biomech. Eng. 1989, 111, 200-205.
  • 18. Polak A.G., Lutchen K.R.: Forced expiration from heterogeneous lungs - a model study. Am. J. Respir. Crit. Care Med. 2001, 163, A823.
  • 19. Polak A.G., Lutchen K.R.: Computational model for forced expiration from asymmetric normal lungs. Ann. Biomed. Eng. 2003, 31, 891-907.
  • 20. Weibel E.R.: Morphometry of the Human Lung. Springer, Berlin 1963.
  • 21. Hughes J.M.B., Hoppin F.G. Jr., Mead J.: Effect of lung inflation on bronchial length and diameter in excised lungs, J. Appl. Physiol. 1972, 32, 25-35.
  • 22. Bogaard J.M., Overbeek S.E., Verbraak A.F.M., Vons C., Folgering H.T.M., van der Mark Th.W., Roos C.M., Sterk P.J. and the Dutch CNSLD study group: Pressure-volume analysis of the lung with an exponential and linear-exponential model in asthma and COPD. Eur. Respir. J. 1995, 8, 1525-1531.
  • 23. Polak A.G.: A unified mathematical model for airflow during maximum expiration. Modelling, Measurement & Control, C, 1997, 56, 55-64.
  • 24. Reynolds D.B.: Steady expiratory flow-pressure relationship of a model of the human bronchial tree. J. Biomech. Eng. 1982, 104, 153-158.
  • 25. Horsfield K., Dart G., Olson D.E., Cumming G.: Models of the human bronchial tree. J. Appl. Physiol. 1971, 31, 207-217.
  • 26. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in C: the Art of Scientific Computing. Cambridge University Press, Cambridge 1992.
  • 27. Polak A.G.: Toward a metrological model of maximal expiration, In: H. Boom, C. Robinson, W. Rutten, M. Neuman, H. Wijkstra (Eds.), Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, IEEE, New York 1997, 4, 1691-1692.
  • 28. Polak A.G., Mroczka J.: A metrological model for maximum expiration. Measurement, 1998, 23, 265-270.
  • 29. Lambert R.K.: Sensitivity and specificity of the computational model for maximal expiratory flow. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 1984, 57, 958-970.
  • 30. Lambert R.K., Castile R.G., Tepper R.S.: Model of forced expiratory flows and airway geometry in infants. J. Appl. Physiol. 2004, 96, 688-692.
  • 31. Lambert R.K., Beck K.C.: Airway area distribution from the forced expiration maneuver. J. Appl. Physiol. 2004, 97, 570-578.
  • 32. Mroczka J., Polak A.G.: Reduced model for forced expiration and analysis of its sensitivity, In: D.D. Feng, O. Dubois, J. Zaytoon, E. Carson (Eds.), Modelling and Control in Biomedical Systems 2006 (including Biological Systems), Elsevier, Oxford 2006, 159-164.
  • 33. Polak A.G.: Indirect measurements: combining parameter selection with ridge regression. Meas. Sci. Technol. 2001, 12, 278-297.
  • 34. Thomaseth K., Cobelli C.: Generalized sensitivity functions in physiological system identification. Ann. Biomed. Eng. 1999, 27, 607-616.
  • 35. Mroczka J., Polak A.G.: Selection of identifiable parameters from the reduced model for forced expiration, In: J. Nagel, R. Magjarevic (Eds.), World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings, Springer, Berlin 2006, 14, 664-667.
  • 36. Hoerl A.E., Kennard R.W.: Ridge regression: biased estimation for non-orthogonal problems. Technometrics, 1970, 12, 55-62.
  • 37. Sjöberg J., Zhang Q., Ljung L., Benveniste A., Delyon B., Glorennec P.-Y., Hjalmarsson H., Juditsky A.: Nonlinear black-box modeling in system identification: a unified overview. Automatica, 1995, 31, 1691-1724.
  • 38. Tikhonov A.N., Arsenin V.Y.: Solutions of Ill-Posed Problems. Winston, Washington 1977.
  • 39. Morlion B., Polak A.G.: Simulation of lung function evolution after heart-lung transplantation using a numerical model. IEEE Trans. Biomed. Eng. 2005, 52, 1180-1187.
  • 40. Polak A.G., Verbanck S., Paiva M.: Flow-volume curves and multiple-breath washouts. Workshop on Structure and Function in the Periphery of the Lung, Brussels, September 15-16, 2005. (unpublished).
  • 41. Polak A.G., Mroczka J.: Analysis of flow limiting mechanisms during forced expiration, In: J. Nagel, R. Magjarevic (Eds.), World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings, Springer, Berlin 2006, 14, 88-91.
  • 42. Estenne M., Ketelbant P., Primo G., Yernault J. C.: Human heart-lung transplantation: physiologic aspects of the denervated lung and post-transplant obliterative bronchiolitis. Am. Rev. Respir. Dis. 1987, 135, 976-978.
  • 43. Tawhai H.M., Pullan, A.J., Hunter, P.J.: Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 2000, 28, 793-802.
  • 44. Tgavalekos N.T., Venegas J.G., Suki B., Lutchen K.R.: Relation between structure, function, and imaging in a three-dimensional model of the lung. Ann. Biomed. Eng. 2003, 31, 363-373.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0045-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.