PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The virtual cardio-respiratory system: a sub-model of gas exchange and transfer

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A virtual cardio-respiratory system (CRS) is proposed for testing ventilatory support and scientific hypothesis. It may appear more convenient than experiments on animals or limited investigations on patients. In particular, there are no limitations for manipulation of virtual CRS parameters while such manipulation is difficult or impossible in the case of real CRS. The virtual CRS architecture: The proposed virtual CRS consists of: (a) the sub-model of respiratory system mechanics (RSM) previously used as the stand-alone virtual respiratory system, (b) a sub-model of gas exchange and transfer in the respiratory and circulatory systems (GET), which is constituted with three modules: gas transfer in respiratory system, gas exchange in lungs, and gas transfer in circulation. The GET utilizes airflows and pressures supplied by the RSM whereas the RSM utilizes volumes of gases supplied by the GET. Results: the CRS gave proper results for both respiration and respiratory arrest. In particular, if the CRS 'respired' with pure oxygen then arterial blood saturation with oxygen remained high for tens of minutes after respiratory halt when airways were open; otherwise atelectasis developed during 8-10 minutes. Like for real patients, carbon dioxide tension in blood decreased quickly when ventilation increased and it increased slowly when the ventilation fell.
Twórcy
autor
  • Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland, tgol@ibib.waw.pl
Bibliografia
  • 1. Gólczewski T., Kozarski M., Darowski M.: The respirator as a user of virtual lungs. Biocybernetics and Biomedical Engineering 2003, 23(2), 57-66.
  • 2. Gólczewski T., Darowski M.: Influence of ventilatory mode on respiration parameters - investigation on virtual lungs, Biocybernetics and Biomedical Engineering 2003, 23(3), 63-72.
  • 3. Darowski M., Gólczewski T., Michnikowski M.: Choice of proper lung ventilation method. Biocybernetics and Biomedical Engineering 2006, 26(1), 21-37.
  • 4. Gólczewski T., Darowski M.: Virtual respiratory system in investigation of CPAP influence on optimal breathing frequency in obstructive lungs disease. Nonlinear Biomedical Physics 2007, 1, 6.
  • 5. Gólczewski T., Darowski M.: Virtual respiratory system for education and research: simulation of expiratory flow limitation for spirometry. Int. J. Artif. Organs 2006, 29, 961-972.
  • 6. Corno C., Fiore G.B., Costantino M.L.: A mathematical model of neonatal tidal liquid ventilation integrating airway mechanics and gas transfer phenomena. IEEE Trans. Biomed. Eng. 2004, 51, 604-611.
  • 7. Tomalak W., Peslin R., Duvivier C.: Respiratory tissue properties derived from flow transfer function in healthy humans. J. Appl. Physiol. 1997, 82, 1098-1106.
  • 8. Nunn J.F.: Applied respiratory physiology (3rd Edn). Butterworth-Heinemann, London 1987.
  • 9. Edmark L., Kostova-Aherdan K., Enlund M., Hedenstierna G.: Optimal oxygen concentration during induction of general anesthesia. Anesthesiology 2003, 98(1), 28-33.
  • 10. Mottaghy K., Schaich-Lester D., Lester A., Oedekoven B., Assmann R.: Long-term extracorporeal CO2 removal in sheep for up to 7 days using capillary fiber membrane oxygenators. ASAIO Trans. 1987, 33(3), 565-569.
  • 11. Mottaghy K., Oedekoven B., Bey R., Schaich-Lester D., Starmans H., Schmid-Schonbein H.: Physiological aspects of extracorporeal CO2-removal in dogs and sheep with regard to clinical application. Life Support Syst. 1986, 4 Suppl. 1, 59-71.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0045-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.