PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of properties of periodic fetal movements and of the corresponding ultrasonic Doppler signals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Doppler signals collected on the abdomen of the pregnant woman were submitted to the discrete wavelet transform using the db 10 wavelet. The wavelet reconstruction products were submitted to the autocorrelation analysis. The processing, supported with the ultrasonographic scanning enabled identification of the fetal periodic activities. The fetal pseudo-breathing movement velocity always falls in the range of 5-10 mm/s (Doppler frequency range 12.5-25 Hz), velocities of cardiac structures - in the range of 20-75 mm/s (Doppler frequency 50-200 Hz). The signals resulting from fetal displacements provoked by maternal breathing and cardiac action or fetal hiccup are expected not to adversely affect estimation of the fetal rhythms. These findings are important for the development of fetal monitoring systems.
Twórcy
autor
autor
  • Institute of Precision and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, św. A. Boboli 8, 02-525 Warszawa, Poland, K.Kalużynski@mchtr.pw.edu.pl
Bibliografia
  • 1. Manning F.A., Platt L.D., Sipos L.: Antepartum fetal evaluation: development of fetal biophysical profile. Am. J. Obstet. Gynecol., 1980, 136, 787-795.
  • 2. Geijn van H.P.: Modern biophysical criteria of fetal well-being. Achievements in Gynecology, Mancuso S. (Ed), Contrib. Gynecol. Obstet., Karger Basel, 1989, 17, 10-17.
  • 3. Nelson K.B., Dambrosia J.M., Ting T.Y., Grether J.K.: Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N. Engl. J. Med. 1996, 334, 613-618.
  • 4. Marsal K.: Fetal breathing movements, characteristics and clinical significance. Obstet. Gynecol. 1978, 52, 394-401.
  • 5. Vintzileos A.M., Gaffney S.E., Salinger L.M., Kontopoulos V.G., Campbell W.A., Noachimson D.J.: The relationships among the fetal biophysical profile, umbilical cord pH and Apgar scores. Am. J. Obstet. Gynecol. 1987, 157, 627-631.
  • 6. Mc Nay M.B., Flemming J.E.E.: Forty years of obstetric ultrasound 1957-1997: from A-scope to three dimensions. Ultrasound Med. Biol., 1999, 25, 3-56.
  • 7. Wheeler T., Roberts K., Peters J., Murrills A.: Detection of fetal movement using Doppler ultrasound. Obstet. Gynecol. 1987, 70, 251-254.
  • 8. Trudinger B.J., Cook C.M.: Fetal breathing movements - A comparison of hard copy records produced by M-mode and Doppler ultrasound. Early Hum. Dev., 1989, 20, 247-253.
  • 9. Besinger R.E. and Johnson T.R.B.: Doppler recordings of fetal movement: clinical correlation with real-time ultrasound. Obstet. Gynecol., 1989, 74, 277-280.
  • 10. Yamakoshi Y., Otaki H., Shinozuka N., Masuda H.: Internal tissue displacement measurement based on ultrasonic wave Doppler signal detection and its application to fetal movement monitoring Ultrasonics, 1996, 34, 769-775.
  • 11. Karlsson B., Pourcelot D., Helgason T., Pourcelot L., Berson M.: Distance of foetal movement measured using the analytical signal derived from nondirectional Doppler sound. Med. Eng. Phys. 1998, 20, 325-331.
  • 12. Goovaerts H.G., van Geijn H.P.. Rompelman O., Mantel R., Swartjes J.M.: Recording fetal breathing movements with a passive transducer based on an inductive principle. Med. Biol. Eng. Comput., 1991, 29, 358-364 .
  • 13. Ansourian M.N., Dripps J.H., Beattie G.J., Boddy K.: Autoregressive spectral estimation of fetal breathing movement. IEEE Trans. BME, 1989, 36, 1076-1084.
  • 14. Gough J.D., Poore E.R.: A continuous wave Doppler ultrasound method of recording fetal breathing in utero. Ultrasound Med. Biol, 1979, 5, 249-256.
  • 15. Marsal K, Ulmsten U., Lindstrom K.: 1978 Device for measurement of fetal breathing movements part II, Ultrasound Med. Biol. 4, 13-26.
  • 16. Kałużyński K., Berson M., Pourcelot L., Pałko T.: Detection of fetal breathing and cardiac signals and rhythms in the ultrasonic Doppler signal recorded on the surface of the maternal abdomen. Med. Biol. Eng. Comput., 1993, 31, 405-411.
  • 17. Yamakoshi Y., Shimizu T., Shinozuka N., Masuda H.: Automated Fetal Breathing Detection from Internal Small Displacement Measurement. Biomed. Technik, 1996, 41, 242-247.
  • 18. Karlsson B., Berson B., Helgason T., Geirsson R.T., Pourcelot L.: Effects of fetal and maternal breathing on the ultrasonic Doppler signal due to fetal heart movement. Eur. J. Ultrasound, 2000, 11, 47-52.
  • 19. Foulquiere K., Karlsson B., Vilbergssont G., Berson M.: Using Modified Fetal Monitor and Signal Processing to Detect Fetal Breathing Movement. Proc. IEEE Ultrasonics Symposium, 2000, 1391-1394.
  • 20. Addison P.S.: Wavelet transforms and the ECG: a review. Physiol. Meas., 2005, 26, 155-199.
  • 21. Zhang Y., Guo Z., Wang W., He S., Lee T., Loew M.: A comparison of the wavelet and short-time Fourier transforms for Doppler spectral analysis. Med. Eng. Phys., 2003, 25, 547-557.
  • 22. Akay M., Szeto H.H.: Investigating the relationship between fetus EEG, respiratory, and blood pressure signals during maturation using wavelet transform. Ann. Biom. Eng., 1995, 23, 574-82.
  • 23. Rioul O., Vetterli M.: Wavelets and signal processing IEEE SP.Mag., 1991, 8, 14-36.
  • 24. Mallat S.G.: A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA, 1998.
  • 25. Misiti M., Misiti Y., Oppenheim G., Poggi J.M.: Wavelet Toolbox For Use with MATLAB, User's Guide ver.2, Mathworks, 2002.
  • 26. Evans D.H., McDicken N.W.: Doppler ultrasound. 2nd ed., J.Wiley & Sons Ltd., 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0043-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.