PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of some statistical methods for referring women for bone densitometry

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of our study is to design and compare some predictive models for estimating the Bone Mineral Density score (BMD) t-score. The data were collected, except the t-score, by self-report from 356 women recruited from the Cantacuzino Hospital, Bucharest, Romania, during the period 1998-2003. The following methods are tuned and compared on this data: the General Regression Model (GRM), the Classification Trees (CT) and the Multilayer Perceptrons Network (MLP). Comparatively with a number of different bone densitometry criteria, currently used in clinical practice, we show that each of the above investigated models have a better sensitivity and specificity.
Twórcy
  • Romanian Academy, Institute of Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie No. 13, Bucharest 50711, Romania, cenachescu@k.ro
Bibliografia
  • 1.Kanis J. A., Delmas P., Burckhardt P., et al.: Guide lines for diagnosis and management of osteoporosis: the European Foundation for Osteoporosis and Bone Disease. Osteoporos Int. 1997, 7, 390-406.
  • 2. Melton L.J. III.: How many women have osteoporosis now? J. Bone Miner. Res. 1995, 10, 175-177.
  • 3. Marshall D.A., Sheldon T.A., Jonsson E.: Recommendations for the application of bone density measurement. What can you believe? Int. J. Technol. Assess. Health Care, 1997, 13, 411-419.
  • 4. Slemenda C.W., Hui S.L., Longcope C., et al.: Predictors of bone mass in perimenopausal women. Ann Intern. Med. 1990, 112, 96-100.
  • 5. Ribot C., Pouilles J.M., Bonneau M., et al.: Assessment of the risk of post-menopausal osteoporosis using clinical factors. Clin. Endocrinol., 1992, 36, 225-228.
  • 6. Bauer D.C., Browner W.S., Cauley J.A., et al.: Factors associated with appendicular bone mass in older women. Ann. Intern. Med., 1993, 118, 657-665.
  • 7. Lydick E., Cook K., Turpin J., et al.: Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone mass. Am. J. Ma Care, 1998, 4, 37-48.
  • 8. Cadarette S.M., Jaglal S.B., Kreiger N., et al.: Development and validation of the osteoporosis risk assessment instrument to facilitate selection of women for bone densitometry. Can. Med. Assoc. J., 2000, 162, 1289-94.
  • 9. Black D.M., Palermo L., Abbott T., et al.: SOFSURF: a simple useful risk factory system can identify the large majority of women with osteoporosis. Bone, 1998, 23, S605.
  • 10. Martin A.: Risk Factors and the Diagnosis of Osteoporosis for Women. PhD Thesis, University "Carol Davilla": Bucharest 2004.
  • 11. Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer-Verlag: New York 2002.
  • 12. Ripley B.D.: Pattern Recognition and Neural Networks, Cambridge Univ. Press 1996.
  • 13. Demuth H., Beale M.: Neural Network Toolbox. User's Guide, The Mathworks Inc.: Natick 2000.
  • 14. Geusens P., Hochberg M.C., van der Voort D.J.M., et al.: Performance of Risk Indices for identifying Low Bone density in Postmenopausal Women. Mayo Clin Proc. 2002, 77, 629-637.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0043-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.