PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The classification of gene expression data is still new, difficult and also an interesting field of endeavour. There is a demand for powerful approaches to this problem, which is one of the ultimate goals of modern biological research. Two different techniques for inducing decision trees are discussed and evaluated on well-known and publicly available gene expression datasets. Empirical results are presented.
Twórcy
autor
Bibliografia
  • 1. Alon U. et al.: Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays. Proceedings of National Academy of Sciences of the United States of America, 1999, 96, 6745-6750.
  • 2. Baldi P., Brunak S.: Bioinformatics: the machine learning approach. 2nd ed. Cambridge, MA: MIT Press; 2001.
  • 3. Ben-Dor A. et al.: Tissue classification with gene expression profiles. J. Comput. Biol., 2000,7,559-83.
  • 4. Breiman, L. et al.: Classification and Regression Trees, Wadsworth Int. 1984.
  • 5. Duda O., Heart P., Stork D.: Pattern Classification. 2nd ed. J. Wiley, 2001.
  • 6. Dudoit S.J., Fridlyand J., Speed T.: Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc., 2002, 97, 77-87.
  • 7. Gentleman R. et al. Bioconductor: Open software development for computational biology and bio-informatics. Genome Biology, 2004, 5, R80.
  • 8. Gentleman R. Genefilter: filter genes. R package version 1.5.0.
  • 9. Gordon G.J. et al.: Translation of Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer And Mesothelioma. Cancer Research, 2002, 62, 4963-4967.
  • 10. Golub T.R. et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286, 531-537.
  • 11. Guyon I., Weston J., Barnhill S., Vapnik V.: Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46, 389-422.
  • 12. Jinyan L., Huiqing L.: Ensembles of cascading trees. In ICDM '03: Proceedings of the Third IEEE International Conference on Data Mining, 585, IEEE Computer Society, 2003.
  • 13. Kent Ridge: Bio-medical Data Set Repository: http://sdmc.lit.org.sg/GEDatasets/Datasets.html
  • 14. Krętowski M., Grześ M.: Global Induction of Oblique Decision Trees: An Evolutionary Approach. In: Proc. of IIPWM 05, Springer, 2005, 309-319.
  • 15. Krętowski M., Grześ M.: Global Learning of Decision Trees by an Evolutionary Algorithm. In: Information Processing and Security Systems. Springer, 2005, 401-410.
  • 16. Kuo W.P. et al.: A primer on gene expression and microarrays for machine learning researchers. Journal of Biomedical Informatics, 2004, 37, 4, 293-303.
  • 17. Laura J. van 't Veer et al.: Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer. Letters to Nature, Nature, 2002, 415, 530-536.
  • 18. Lyons-Weiler J., Patel S., Bhattacharya S.: A classification-based machine learning approach for the analysis of genome-wide expression data. Genome Research, 2003, 13, 503-512.
  • 19. Madeira. S. C., Oliveira A. L.: Biclustering Algorithms for Biological Data Analysis: A Survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2004, 1,1, 24-45.
  • 20. Murthy S., Kasif S., Salzberg S.: A system for induction of oblique decision trees. Journal of Artificial Intelligence Research 1994, 2, 1-33.
  • 21. Pomeroy S. L. et al.: Prediction of Central Nervous System Embryonal Tumour Outcome Based on Gene Expression, Letters to Nature, Nature, January 2002, 415,436-442.
  • 22. Quinlan J.R.: C4.5: programs for machine learning. San Francisco: Morgan Kaufmann, 1993.
  • 23. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org. 2005.
  • 24. Singh, et al.: Gene Expression Correlates of Clinical Prostate Cancer Behavior. Cancer Cell, March, 2002,1,203-209.
  • 25. Shipp M.A. et al.: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 2002, 8, 68-74.
  • 26. Tan A.C., Gilbert D.: Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics, 2003, 2(3 Suppl), 75-83.
  • 27. Thomas, J.G. et al.: An efficient and robust statistical modelling approach to discover differentially expressed genes using genomic expression profiles. Genome Res., 2001, 11, 1227-1236.
  • 28. Valentini G., Muselli M., Ru F.: Bagged Ensembles of SVMs for Gene Expression Data Analysis. In IJCNN2003, Portland, USA, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0043-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.