PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-resolved reflectometry and spectroscopy for assessment of brain perfusion and oxygenation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Time-resolved optical methods and instrumentation for non-invasive assessment of the cerebral cortex perfusion and oxygenation are presented. The oxygenation can be calculated using the moments of the distributions of times of flight of photons measured at two wavelengths in the near infrared region. For assessment of the brain perfusion, the kinetics of the inflow and washout of an exogenous dye injected intravenously is analyzed. The instrument developed at the Institute of Biocybernetics and Biomedical Engineering PAS is equipped with picosecond diode lasers, fast photodetectors and time correlated single photon counting electronics for acquisition of the distributions of times of flight of photons. This technique allows for a depth-resolved estimation of the changes of absorption and, in consequence, for an assessment of the changes occurring in the cerebral cortex. Combination of the data from multiple sources and detectors placed on the surface of the head with the depth-resolved analysis based on the moments enables to obtain images of the cortex perfusion and/or oxygenation. Potential applications of the instrument and its limitations are also discussed.
Twórcy
autor
autor
autor
  • Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Trojdena 4 str., Poland, Adam.Liebert@ibib.waw.pl
Bibliografia
  • 1. Jobsis F.F: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977 Dec 23, 198(4323), 1264-1267.
  • 2. Hamaoka T., Iwane H., Shimomitsu T., Katsumura T., Murase N., Nishio S., et al.: Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy. J. Appl. Physiol. 1996 Sep, 81(3), 1410-1417.
  • 3. Grosenick D., Wabnitz H., Moesta K.T., Mucke J., Moller M, Stroszczynski C., et al.: Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography. Phys. Med. Biol. 2004 Apr 7,49(7), 1165-1181.
  • 4. Elwell C.: A practical users guide to near infrared spectroscopy. 1995.
  • 5. Liebert A., Maniewski R.: Near infrared spectroscopy for tissue oxygenation monitoring (in Polish). In: Nałęcz M., ed. Biocybernetyka i Inżynieria Biomedyczna 2000. Warszawa: EXIT 2001, 819-842.
  • 6. Litscher G., Schwarz G.: Transcranial cerebral oximetry: Pabst Sci. Pub. Lengerich 1997.
  • 7. Staszkiewicz W., Gawlikowska D., Maniewski R., Zbieć A., Gabrusiewicz A.: Zastosowanie przez-czaszkowej oksymetrii mózgu w chirurgii tętnic szyjnych. Pol. Przeglaąd Chirurg. 2001, 72(2), 186-199.
  • 8. Maniewski R., Gawlikowska D., Staszkiewicz W., Liebert A., Gabrusiewicz A., Zbieć A.: Near Infrared Spectroscopy for Monitoring of Cerebral Oxygenation During Carotid Surgery. Technology and Health Care. 2001, 9(1-2), 181-183.
  • 9. Dobrogowska-Kunicka J., Liebert A., Wilczyński J., Biederman A., Szufladowicz M.: Monitoring of cerebral oxygenation during circulatory arrest in patients undergoing cardiac surgery with the use of near infrared spectroscopy. European J. Neurology. 1998, 5, S26.
  • 10. Raciborski W., HendigerW., Staszkiewicz W., Łukasiewicz P., Liebert A., Maniewski R.: Chemical lumbar sympathectomy effects evaluated by laser-Doppler flowmetry and near infrared spectroscopy - preliminary studies. J. Vase. Res. 2000, 37, suppl. 1, 48.
  • 11. Szufladowicz E., Maniewski R., Kozluk E., Zbieć A., Nosek A., Walczak R: Near-infrared spectroscopy in evaluation of cerebral oxygenation during vasovagal syncope. Physiol Meas. 2004 Aug, 25(4), 823-836.
  • 12. Chance B., Cope M., Gratton E., Ramanujam N., Tromberg B.: Phase measurement of light absorption and scatter in human tissue. Rev Sci Instrum. 1998 Oct, 69(10), 3457-3481.
  • 13. Steinbrink J., Wabnitz H., Obrig H., Villringer A., Rinneberg H.: Determining changes in NIR absorption using a layered model of the human head. Phys. Med. Biol. 2001 Mar, 46(3), 879-896.
  • 14. Liebert A., Wabnitz H., Steinbrink J., Obrig H., Moller M., Macdonald R., et al.: Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons. Appl. Optics. 2004 May 20, 43(15), 3037-3047.
  • 15. Selb J., Stott J.J., Franceschini M.A., Sorensen A.G., Boas D.A.: Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation. J. Biomed Opt. 2005 Jan-Feb, 10(1), 11013.
  • 16. Arridge S.R., Hebden J.C., Schweiger M.W., Schmidt F.E., Fry M.E., Hillman E.M.C., et al.: A method for 3D time-resolved optical tomography. Intern. J. Imaging Systems Technol. 2000, 11, 2-11.
  • 17. Cubeddu R., Pifferi A., Taroni P., Torricelli A., Valentini G.: Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance. Appl. Optics. 1999 Jun 1, 38(16), 3670-3680.
  • 18. Ostergaard L., Weisskoff R.M., Chesler D.A., Gyldensted C., Rosen B.R.: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn. Reson. Med. 1996 Nov, 36(5), 715-725.
  • 19. Schmidt K.C., Turkheimer F.E.: Kinetic modeling in positron emission tomography. Q J. Nucl. Med. 2002 Mar, 46(1), 70-85.
  • 20. Sase S., Honda M., Kushida T., Seiki Y., Machida K., Shibata I.: Quantitative cerebral blood flow calculation method using white matter lambda in xenon CT. J. Comput Assist Tomogr. 2002 May-Jun, 26(3), 471-478.
  • 21. Liebert A., Wabnitz H., Steinbrink J., Moller M., Macdonald R., Rinneberg H., et al.: Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance. Neuroimage. 2005 Jan 15,24(2), 426-435.
  • 22. Desmettre T., Devoisselle J.M., Mordon S.: Fluorescence properties and metabolic features of indo-cyanine green (ICG) as related to angiography. Surv. Ophthalmol. 2000 Jul-Aug, 45(1), 15-27.
  • 23. Hope-Ross M., Yannuzzi L.A., Gragoudas E.S., Guyer D.R., Slakter J.S., Sorenson J.A., et al.: Adverse reactions due to indocyanine green. Ophthalmology. 1994 Mar, 101(3) ,529-533.
  • 24. Liebert A., Wabnitz H., Obrig H., Erdmann R., Moller M., Macdonald R., et al.: Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. Neuroimage. 2006 Jun 1,31(2), 600-608.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0043-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.