Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
New methods for magnetic resonance imaging of electric properties in living bodies have been developed. The method of conductivity imaging was based on the proportionality between the electric conductivity and the diffusion coefficient of water. The conductivity images of the human brain exhibited high anisotropy in conductivity in some regions in the white matter. A distinctive signal inhomogeneity arises in the magnetic resonance images of samples whose dimension is comparable to the wavelength of RF electromagnetic fields. Spatial distributions of the magnitude and phase in cylindrical phantoms were obtained by theoretical calculations and experiments at 4.7 T. As the diameter of the phantom approaches to the wavelength of the electromagnetic fields in the phantom, the magnitude of the signals in the center increases because of the dielectric resonance effect. An increase in conductivity resulted in a suppression of the signal inhomogeneity due to the skin effect. In addition, the increase in conductivity caused a phase delay in the center of the phantom.
Wydawca
Czasopismo
Rocznik
Tom
Strony
177--184
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
autor
- Departament of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, sekino@medes.m.u-tokyo.ac.jp
Bibliografia
- 1. Matherall P., Barger D.D., Smallwood R.H., Brown B.H.: Three-dimensional electrical impedance tomography, Nature, 1996, 3 80, 509-512.
- 2. Sekino M., Ueno S.: Comparison of current distributions in electroconvulsive therapy and transcranial magnetic stimulation, J. Appl. Phys., 2002, 91, 8730-8732.
- 3. Ueno S., Iriguchi N.: Impedance magnetic resonance imaging: a method for imaging of impedance distributions based on magnetic resonance imaging, J. Appl. Phys., 1998, 83, 6450-6452.
- 4. Yukawa Y., Iriguchi N., Ueno S.: Impedance magnetic resonance imaging with external AC field added to main static field, IEEE Trans. Magn., 1999, 35,4121-1123.
- 5. Sekino M., Yamaguchi K., Iriguchi N., Ueno S.: Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging, J. Appl. Phys., 2003, 93, 6730-6732.
- 6. Sekino M., Inoue Y., Ueno S.: Magnetic resonance imaging of mean values and anisotropy of electrical conductivity in the human brain, Neurol. Clin. Neurophysiol., 2004, 55,1-5.
- 7. Sekino M., Inoue Y, Ueno S.: Magnetic resonance imaging of electrical conductivity in the human brain; IEEE Trans. Magn., 2005, 41, 4203-4205.
- 8. Gabriel C., Gabriel S., Corthout E.: The dielectric properties of biological tissues: I. literature survey; Phys. Med. Biol., 1996,41, 2231-2249.
- 9. Glover G.H., Hayes C.E., Pelc N.J., Edelstein W.A., Mueller O.M., Hart H.R., Hardy C.J., O'Donnell M., Barber W.D.: Comparison of linear and circular polarization for magnetic resonance imaging, J. Magn. Reson., 1985, 64, 255-270.
- 10. Crazier S., Brereton I.M., Zelaya P.O., Roffmann W.U., Doddrell D.M.: Sample-induced RF perturbations in high-field, high-resolution NMR spectroscopy, J. Magn. Reson., 1997, vol. 126, 39-47.
- 11. Tropp J.: Image brightening in samples of high dielectric constant, J. Magn. Reson., 2004, 167, 12-24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0043-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.