PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To overcome the drive shaft seal and bearing problem of the rotary blood pump, a hydro-dynamic bearing, a magnetic fluid seal and a brushless DC motor were employed in an axial flow pump. This enabled contact free rotation of the impeller without material wear. The axial flow pump consists of a brushless DC motor, an impeller and a guide vane. The motor rotor is directly connected to the impeller by a motor shaft. A hydrodynamic bearing is installed on the motor shaft. The motor and the hydrodynamic bearing are housed in a cylindrical casing and are waterproofed by a magnetic fluid seal. Impeller shaft displacement was measured using laser sensor. The axial and radial displacements of the shaft were less than a few micrometers for up to 8500 rpm. The shaft did not touch the housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mmHg. The left ventricular bypass experiment was performed in vitro. With an increase of the motor speed, the bypass flow increased, and at 7000 rpm a total bypass was obtained. The hydrodynamic bearing worked normally under variable load conditions. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal and a brushless DC motor provides contact free rotation of the impeller without material wear.
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • Department of Biomedical Systems Engineering, Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita-ku, Sapporo 060-0814, Japan, mitamura@bme.ist.hokudai.ac.jp
Bibliografia
  • 1. Akimoto T., Litwak K.N., Yamazaki K., et al.: The role of diastolic pump flow in centrifugal blood pump hemodynamics; Artif. Organs, 2001, 25, 724-727.
  • 2. Westaby S., Frazier O.K., Beyersdorf R, et al.: The Jarvik 2000 Heart. Clinical validation of the intraventricular position; European Journal of Cardio-Thoracic Surgery, 2002, 22, 228-232.
  • 3. Wilhelm M. J., Schmid C., Tjan T.D.T., et al.: Long-term support of 9 patients with the DeBakey VAD for more than 200 days; The Journal of Heart and Lung Transplantation, 2002, 21, 105-105.
  • 4. Saito S., Westaby S., Piggott D., et al.: Reliable long-term non-pulsatile circulatory support without anticoagulation; European Journal of Cardio-Thoracic Surgery, 2001, 19, 678-683.
  • 5. Hetzer R., Weng Y., Potapov E.V., et al.: First experiences with a novel magnetically suspended axial flow left ventricular assist device; European Journal of Cardio-thoracic Surgery, 2004, 25-S, 964-970.
  • 6. Fukamachi K., Ochiai Y., Doi K., et al.: Chronic Evaluation of the Cleveland Clinic CorAide Left Ventricular Assist System in Calves; Artif. Organs, 2002, 26, 529-533.
  • 7. Meer A.L., James N.L., Edwards G.A., et al.: Initial in vivo experience of the ventrassist implantable rotary blood pump in sheep; Artif. Organs, 2003, 27, 21-26.
  • 8. Mitamura Y, Nakamura H., Okamoto E., et al.: Development of the Valvo Pump: An axial flow pump implanted at the heart valve position; Artif. Organs, 1999, 23, 566-571.
  • 9. Sekine K., Mitamura Y, Murabayashi S., et al.: Development of a magnetic fluid shaft seal for an axial-flow blood pump; Artif. Organs, 2003, 27, 892-896.
  • 10. Mitamura Y, Yano T., Kido K., et al.: Current status of the intra-cardiac axial flow pump; Lecture Notes on ICB Seminars: 7th Polish-Japanese Seminar on New Technologies for Future Artificial Organs, 2005, 23-26.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0043-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.