PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Redundancy relations for fault diagnosis in nonlinear uncertain systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of fault detection and isolation in nonlinear uncertain systems is studied within the scope of the analytical redundancy concept. The problem solution involves checking the redundancy relations existing among measured system inputs and outputs. A novel method is proposed for constructing redundancy relations based on system models described by differential equations whose right-hand sides are polynomials. The method involves a nonlinear transformation of the initial system model into a strict feedback form. Algebraic and geometric tools are used for this transformation. The features of the method are made particular for uncertain systems with a linear structure.
Rocznik
Strony
477--489
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Institute for Marine Technology Problems Far Eastern Branch of the Russian Academy of Sciences Sukhanova 5a, Vladivostok, 690950, Russia, shumsky@mail.primorye.ru
Bibliografia
  • [1] Chow E. Y. and A.S. Willsky. (1984): Analytical redundancy and the design of robust failure detection systems. IEEE Transactions on Automatic Control, Vol. AC-29, No. 7, pp. 603-614.
  • [2] Comtet-Varga G., C. Christophe, V. Cocquempot and M. Staroswiecki. (1999): F.D.I. For the induction motor using elimination theory. Proceedings of the European Control Conference, Karlsruhe, Germany, (on CD-ROM)
  • [3] Cox D., Little J. and D. O'Shea. (1992): Ideals, Varieties and Algorithms. New York: Springer.
  • [4] De Persis C. and A. Isidori. (2001): A geometric approach to nonlinear fault detection and isolation. IEEE Transactions on Automatic Control, Vol. AC-46, No. 6, pp. 853-865.
  • [5] De Persis C. and A. Isidori. (2002): Fault detection filters. International Journal of Robust and Nonlinear Control, Vol. 12, No. 6, pp. 729-747.
  • [6] Ding X. and P.M. Frank. (1993): An adaptive observer-based fault detection scheme for nonlinear dynamic systems. Proceedings of the 12-th IFAC World Congress, Sydney, Australia, Vol. 8, pp. 307-310
  • [7] Diop S. (1991): Elimination in control theory. - Mathematics of Control, Signals, and Systems, Vol. 14, No. 1, pp. 459-474
  • [8] Frank P.M. (1990): Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy - A survey and some new results. Automatica, Vol. 26, No 3, pp. 459-474.
  • [9] Gertler J. and M.M. Kunwer. (1993): Optimal residual decoupling for robust fault diagnosis. Proceedings of the International Conference Tooldiag'93, Toulouse, France, pp. 436-452.
  • [10] Isermann R. (1984): Process fault detection based on modeling and estimation methods: A survey. Automatica, Vol. 20, No. 4, pp. 387-404.
  • [11] Isidori A. (1989): Nonlinear Control Systems. Berlin: Springer.
  • [12] Lou X.C., Willsky A.S. and G.L. Verghese. (1986): Optimally robust redundancy relations for failure detection in uncertain systems. Automatica, Vol. 22, No. 3, pp. 333-344.
  • [13] Massoumnia M. A. (1986): A geometric approach to the synthesis of failure detection filters. IEEE Transactions on Automatic Control, Vol. AC-31, No. 9, pp. 839-846.
  • [14] Massoumnia M. A., G. C. Verghese and A. S. Willsky. (1989): Failure detection and identification. IEEE Transactions on Automatic Control, Vol. AC-34, No. 3, pp. 316-323.
  • [15] Medvedev A. (1994): Parity space method: A continuous time approach. Proceedings of the American Control Conference, Baltimore, Vol. 1, pp. 662-665.
  • [16] Mironovskii L.A. (1980): Functional diagnosis of dynamic systems. Automation and Remote Control, Vol. 41, No. 8, pp. 1122-1143.
  • [17] Park J., G. Rizzoni and W.B. Ribbens. (1994): On the representation of sensor faults in fault detection filters. Automatica, Vol. 30, No. 11, pp. 1793-1795.
  • [18] Patton R. and S. Kangethe. (1989): Robust fault diagnosis using eigenstructure assignment of observers. In: Fault Diagnosis in Dynamic Systems. Theory and Application (Patton R.J., Frank P.M., Clark R.N. N.Y., Eds.), Englewood Cliffs: Prentice Hall, pp. 99-154.
  • [19] Pekpe, K.M., G. Mourot and J. Ragot. (2004): Subspace method for sensors fault detection and isolation - application to grinding circuit monitoring. Proceedings of the 11th IFAC Symposium on Automation in Mining, Mineral and Metal Processing, Nancy, France.
  • [20] Ritt J.F. (1950): Differential Algebra. New York, American Math. Society.
  • [21] Seliger R. and P.M. Frank. (1991): Robust component fault detection and isolation in nonlinear dynamic systems using nonlinear unknown input observers. Proceedings of the IFAC Symposium SAFEPROCESS'91, Baden-Baden, Germany, pp. 313-318.
  • [22] Shumsky, A.Ye. (1991): Fault isolation in nonlinear systems via functional diagnosis. Automation and Remote Control, Vol. 52, No. 12, pp. 1759-1765.
  • [23] Shumsky, A.Ye. (1992): Diagnosis of parametric errors in dynamic objects by the hypothesizes testing method. Avtomatika i telemehanika, Vol. 53, No. 10, pp. 171-177 (in Russian).
  • [24] Shumsky, A.Ye. (2002): Robust analytical redundancy relations for fault diagnosis in nonlinear systems. Asian Journal of Control, Vol. 4, No 2, pp. 159-170.
  • [25] Shumsky, A. Ye. and A. N. Zhirabok. (2006): Nonlinear diagnostic filter design: Algebraic and geometric points of view. International Journal of Applied Mathematics and Computer Science, Vol. 16, No. 1, pp. 115-127.
  • [26] Shumsky, A. Ye. (2006): Fault diagnosis of sensors in autonomous underwater vehicle: Adaptive quasi-linear parity relations method. Proceedings of the International Symposium SAFEPROCESS, Beijing, PR China, pp. 415-520.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0041-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.