PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A direct and accurate adaptive semi-Lagrangian scheme for the Vlasov-Poisson equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article aims at giving a simplified presentation of a new adaptive semi-Lagrangian scheme for solving the (1 + 1)- dimensional Vlasov-Poisson system, which was developed in 2005 with Michel Mehrenberger and first described in (Campos Pinto and Mehrenberger, 2007). The main steps of the analysis are also given, which yield the first error estimate for an adaptive scheme in the context of the Vlasov equation. This article focuses on a key feature of our method, which is a new algorithm to transport multiscale meshes along a smooth flow, in a way that can be said optimal in the sense that it satisfies both accuracy and complexity estimates which are likely to lead to optimal convergence rates for the whole numerical scheme. From the regularity analysis of the numerical solution and how it gets transported by the numerical flow, it is shown that the accuracy of our scheme is monitored by a prescribed tolerance parameter \epsilon which represents the local interpolation error at each time step. As a consequence, the numerical solutions are proved to converge in L\infty towards the exact ones as \epsilon and \delta t tend to zero, and in addition to the numerical tests presented in (Campos Pinto and Mehrenberger, 2007), some complexity bounds are established which are likely to prove the optimality of the meshes.
Rocznik
Strony
351--359
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
Bibliografia
  • [1] Besse N. (2004): Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system. SIAM Journal on Numerical Analysis, Vol. 42, No. 1, pp. 350-382.
  • [2] Besse N., Filbet F., Gutnic M., Paun I. and Sonnendrücker E. (2001): An adaptive numerical method for the Vlasov equation based on a multiresolution analysis, In: Numerical Mathematics and Advanced Applications ENUMATH 2001 (F. Brezzi, A. Buffa, S. Escorsaro and A.Murli, Eds.). Ischia: Springer, pp. 437-446.
  • [3] Campos PintoM. (2005): Développement et analyse de schémas adaptatifs pour les équations de transport. Ph.D. thesis (in French), Université Pierre et Marie Curie, Paris.
  • [4] Campos PintoM. (2007): P1 interpolation in the plane and functions of bounded total curvature. (in preparation).
  • [5] Campos Pinto M. and Mehrenberger M. (2005): Adaptive numerical resolution of the Vlasov equation, In: Numerical Methods for Hyperbolic and Kinetic Problems (S. Cordier, T. Goudon, M. Gutnic, E. Sonnendrücker, Eds.). Zürich: European Mathematical Society, Vol. 7, pp. 43-58.
  • [6] Campos Pinto M. and Mehrenberger M. (2007): Convergence of an adaptive semi-Lagrangian scheme for the Vlasov- Poisson system. (submitted).
  • [7] Cheng C.Z. and Knorr G. (1976): The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, pp. 330-351.
  • [8] Cohen A., Kaber S.M., Müller S. and Postel M. (2003): Fully adaptive multiresolution finite volume schemes for conservation laws. Mathematics of Computation, Vol. 72, No. 241, pp. 183-225.
  • [9] Cooper J. and Klimas A. (1980): Boundary value problems for the Vlasov-Maxwell equation in one dimension. Journal of Mathematical Analysis and Applications, Vol. 75, No. 2, pp. 306-329.
  • [10] Dahmen, W. (1982): Adaptive approximation by multivariate smooth splines. Journal of Approximation Theory, Vol. 36, No. 2, pp. 119-140.
  • [11] DeVore, R. (1998): Nonlinear approximation. Acta Numerica, Vol. 7, pp. 51-150.
  • [12] Glassey R.T. (1996): The Cauchy Problem in Kinetic Theory. Philadelphia, PA: SIAM.
  • [13] Gutnic M., Haefele M., Paun I. and Sonnendrücker E. (2004): Vlasov simulations on an adaptive phase-space grid. Computer Physics Communications, Vol. 164, No. 1-3, pp. 214-219.
  • [14] Iordanskii S.V. (1964): The Cauchy problem for the kinetic equation of plasma. American Mathematical Society Translations, Series 2, Vol. 35, pp. 351-363.
  • [15] Raviart P.-A. (1985): An analysis of particle methods. Lecture Notes in Mathematics, Vol. 1127, Springer, Berlin, pp. 243-324.
  • [16] Roussel O., Schneider K., Tsigulin, A. and Bockhorn H. (2003): A conservative fully adaptive multiresolution algorithm for parabolic PDEs. Journal of Computational Physics, Vol. 188, No. 2, pp. 493-523.
  • [17] Sonnendrücker E., Filbet F., Friedman A., Oudet E. and Vay J.L. (2004): Vlasov simulation of beams with a moving grid. Computer Physics Communications, Vol. 164, pp. 390-395.
  • [18] Sonnendrücker E., Roche J., Bertrand P. and Ghizzo A. (1999): The semi-Lagrangian method for the numerical resolution of the Vlasov equation. Journal of Computational Physics, Vol. 149, No. 2, pp. 201-220.
  • [19] Yserentant H. (1992): Hierarchical bases, In: ICIAM 91: Proceedings of the 2nd International Conference on Industrial and Applied Mathematics (R.E. O'Malley, Ed.). Philadelphia, PA: SIAM, pp. 256-276.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0041-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.