Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle- In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase domain, each patch being devoted to a processor. Some Hermite boundary conditions allow for the reconstruction of a good approximation of the global solution. Several numerical results demonstrate the accuracy and the good scalability of the method with up to 64 processors. This work is a part of the CALVI project.
Rocznik
Tom
Strony
335--349
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
autor
- INRIA Lorraine, CALVI
autor
- INRIA Futurs, Scalapplix
autor
- IRMA Strasbourg and INRIA Lorraine, CALVI
Bibliografia
- [1] Bermejo R. (1991): Analysis of an algorithm for the Galerkincharacteristic method. Numerische Mathematik, Vol. 60, pp. 163-194.
- [2] Besse N. and Sonnendrücker E. (2003): Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. Journal of Computational Physics, Vol. 191, pp. 341-376.
- [3] Birdsall C.K. and Langdon A.B.: Plasma Physics via Computer Simulation. Bristol: Institute of Physics Publishing.
- [4] Bouchut F., Golse F. and Pulvirenti M. (2000): Kinetic Equations and Asymptotic Theory. Paris: Gauthier-Villars.
- [5] DeBoor C. (1978): A Practical Guide to Splines. New-York: Springer.
- [6] Campos-Pinto M. and Merhenberger M. (2004): Adaptive Numerical Resolution of the Vlasov Equation.
- [7] Cheng C.Z. and Knorr G. (1976): The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, p. 330.
- [8] Coulaud O., Sonnendrücker E., Dillon E., Bertrand P. and Ghizzo A. (1999): Parallelization of semi-Lagrangian Vlasov codes. Journal of Plasma Physics, Vol. 61, pp. 435-448.
- [9] Feix M.R., Bertrand P. and Ghizzo A. (1994): Title? In: Kinetic Theory and Computing, (B. Perthame, Ed.).
- [10] Filbet F., Sonnendrücker E. and Bertrand P. (2001): Conservative numerical schemes for the Vlasov equation. Journal of Computational Physics, Vol. 172, pp. 166-187.
- [11] Filbet F. and Sonnendrücker E. (2003): Comparison of Eulerian Vlasov solvers. Computer Physics Communications, Vol. 151, pp. 247-266.
- [12] Filbet F. and Violard E. (2002): Parallelization of a Vlasov Solver by Communication Overlapping. Proceedings PDPTA.
- [13] Glassey R.T. (1996): The Cauchy Problem in Kinetic Theory. Philadelphia, PA: SIAM.
- [14] Ghizzo A., Bertrand P., Begue M.L., Johnston T.W. and Shoucri M. (1996): A Hilbert-Vlasov code for the study of high frequency plasma beatwave accelerator. IEEE Transactions on Plasma Science, Vol. 24.
- [15] Ghizzo A., Bertrand P., Shoucri M., Johnston T.W., Filjakow E. and Feix M.R. (1990): A Vlasov code for the numerical simulation of stimulated Raman scattering. Journal of Computational Physis, Vol. 90, pp. 431-457.
- [16] Grandgirard V., Brunetti M., Bertrand P., Besse N., Garbet N., Ghendrih P., Manfredi G., Sarrazin Y., Sauter O., Sonnendrücker E., Vaclavik J. and Villard L. (2006): A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation. Journal of Computational Physics, Vol. 217, pp. 395-423.
- [17] Gutnic M., Haefele M., Paun I. and Sonnendrücker E. (2004): Vlasov simulation on an adaptive phase space grid. Computer Physical Communications, Vol. 164, pp. 214-219.
- [18] Hammerlin G. and Hoffmann K.H. (1991): Numerical Mathematics, New-York: Springer.
- [19] Kim C.C. and Parker S.E. (2000): Massively parallel threedimensional toroidal gyrokinetic flux-tube turbulence simulation. Journal of Computational Physics, Vol. 161, pp. 589-604.
- [20] McKinstrie C.J., Giacone R.E. and Startsev E.A. (1999): Accurate formulas for the Landau damping rates of electrostatic waves. Physics of Plasmas, Vol. 6, pp. 463-466.
- [21] Manfredi G. (1997): Long time behaviour of strong linear Landau damping. Physical Review Letters, Vol. 79.
- [22] Shoucri M. and Knorr G. (1974): Numerical integration of the Vlasov equation. Journal of Computational Physics, Vol. 14, pp. 84-92.
- [23] Sonnendrücker E., Filbet F., Friedman A., Oudet E. and Vay J.L. (2004): Vlasov simulation of beams on a moving phase space grid. Computer Physics Communications, Vol. 164, pp. 390-395.
- [24] Sonnendrücker E., Roche J., Bertrand P. and Ghizzo A. (1999): The semi-Lagrangian method for the numerical resolution of the Vlasov equations. Journal of Computational Physics, Vol. 149, pp. 201-220.
- [25] Staniforth A. and Coté J. (1991): Semi-Lagrangian integration schemes for atmospheric models - A review. Monthly Weather Review, Vol. 119, pp. 2206-2223.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0041-0035