PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A backstepping approach to ship course control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As an object of course control, the ship is characterised by a nonlinear function describing static manoeuvring characteristics that reflect the steady-state relation between the rudder deflection and the rate of turn of the hull. One of the methods which can be used for designing a nonlinear ship course controller is the backstepping method. It is used here for designing two configurations of nonlinear controllers, which are then applied to ship course control. The parameters of the obtained nonlinear control structures are tuned to optimise the operation of the control system. The optimisation is performed using genetic algorithms. The quality of operation of the designed control algorithms is checked in simulation tests performed on the mathematical model of a tanker. In order to obtain reference results to be used for comparison with those recorded for nonlinear controllers designed using the backstepping method, a control system with the PD controller is examined as well.
Rocznik
Strony
73--85
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Electrical and Control Engineering Faculty, Gdańsk University of Technology, ul. Narutowicza 11/12, 80–952 Gdańsk, Poland
autor
  • Marine Electrical Engineering Faculty, Gdynia Maritime University, ul. Morska 83, 81–225 Gdynia, Poland
  • Marine Electrical Engineering Faculty, Gdynia Maritime University, ul. Morska 83, 81–225 Gdynia, Poland
Bibliografia
  • [1] Amerongen J. (1982): Adaptive steering of ship. A model reference approach to improved manoeuvering and economical course keeping. - Ph.D. thesis, Delft University of Technology, the Netherlands.
  • [2] Åström K.J. and Wittenmark B. (1989): Adaptive Control. - Reading, MA: Addison Wesley.
  • [3] Do K.D., Jiang Z.P. and Pan J. (2004): Robust adaptive path following of underactuated ships. - Automatica, Vol. 40, No. 6, pp. 929-944.
  • [4] Ezal K., Pan Z. and Kokotović P. (2000): Locally optimal and robust backstepping design.-IEEE Trans. Automat. Contr., Vol. 45, No. 2, pp. 260-271.
  • [5] Fang Y., Zergeroglu E., Queiroz M.S. and Dawson D.M. (2004): Global output feedback control of dynamically positioned surface vessels: an adaptive control approach. - Mechatron. Vol. 14, No. 4, pp. 341-356.
  • [6] Fleming P.J. and Purshouse R.C. (2002): Evolutionary algorithms in control systems engineering: A survey. - Contr. Engi. Pract., Vol. 10, No. 11, pp. 1223-1241.
  • [7] Fossen T.I. and Strand J.P. (1998): Nonlinear ship control (Tutorial paper). - Proc. IFAC Conf. Control Application in Marine Systems CAMS'98. Fukuoka, Japan. pp. 1-75. Available at www.itk.ntnu.no/ansatte/Fossen_Thor/book/tutorial98.pdf
  • [8] Fossen T.I. and Strand J.P. (1999): A tutorial on nonlinear backstepping: Applications to ship control.-Modell., Identif. Control, Vol. 20, No. 2, pp. 83-135.
  • [9] Fossen T.I. (2002): Marine Control Systems. Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. - Trondheim, Norway: Marine Cybernetics.
  • [10] Goldberg D.E. (1989): Genetic Algorithms in Searching, Optimisation and Machine Learning. - Reading, MA: Addison Wesley.
  • [11] Härkegard 0. (2003): Backstepping and control allocation with applications to flight control. - Ph.D. thesis, Department of Electrical Engineering, Linköping University, Sweden.
  • [12] He S., Reif K. and Unbehauen R. (1998): A neural approach for control of nonlinear systems with feedback linearization. - IEEE Trans. Neural Netw., Vol. 9, No. 6, pp. 1409-1421.
  • [13] Jiang Z.P. (2002): Global tracking control of underactuated ships by Lyapunov direct method. - Automat., Vol. 38, No. 2, pp. 301-309.
  • [14] Kokotović P. and Arcak M. (2001): Constructive nonlinear control: A historical perspective. - Automat., Vol. 37, No. 5, pp. 637-662.
  • [15] Krstić M., Kanellakopulos I. and Kokotovi´c P.V. (1995): Nonlinear and Adaptive Control Design. - New York: Wiley.
  • [16] Krstić M. and Deng H. (1998): Stabilization of Nonlinear Uncertain Systems. - Berlin: Springer.
  • [17] Krstić M. and Tsiotras P. (1999): Inverse optimal stabilization of a rigid spacecraft. - IEEE Trans. Automat. Contr., Vol. 44, No. 5, pp. 1042-1049.
  • [18] Kuljaca O., Swamy N., Lewis F.L and Kwan C.M. (2001): Design and implementation of industrial neural network controller using backstepping. - Proc. 40th IEEE Conf. Decision and Control Orlando, FL, pp. 2709-2714.
  • [19] Kwan C.M. and Lewis F.L. (2000): Robust backstepping control of nonlinear systems using neural networks. - IEEE Trans. Syst. Man Cybern., Part A: Syst. Humans, Vol. 30, No. 6, pp. 753-766.
  • [20] La Salle J. and Lefschetz S. (1961): Stability by Liapunov's direct method with applications. - Academic Press, New York.
  • [21] Lim C.C. and Forsythe W. (1983): Autopilot for ship control. - IEE Proc. Vol. 130, No. 6, pp. 281-295.
  • [22] Michalewicz Z. (1996): Genetic Algorithms + Data Structures = Evolution Programs. -Berlin: Springer.
  • [23] Moradi M.H. and Katebi M.R. (2001): Predictive PID control for ship autopilot design. - Proc. Control Applications in Marine Systems 2001, CAMS'2001, Glasgow, UK, pp. 375-380.
  • [24] Pettersen K.Y. and Nijmeijer H. (2004): Global practical stabilization and tracking for an underactuated ship. A combined averaging and backstepping approach. - Modell. Identif. Contr., Vol. 20, No. 4, pp. 189 -199.
  • [25] Sepulchre R., Jankovic M. and Kokotović P.V. (1997): Constructive Nonlinear Control. -Berlin: Springer.
  • [26] Skjetne R., Fossen T.I. and Kokotovi´c P.V. (2005): Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. - Automat. Vol. 41, No. 2, pp. 289-298.
  • [27] Zhang T., Ge S.S. and Hang C.C. (2000): Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. - Automat., Vol. 36, No. 12, pp. 1835-1846.
  • [28] Zhang Y., Peng P.Y. and Jiang Z.P. (2000): Stable neural controller design for unknown nonlinear systems using backstepping. - IEEE Trans. Neural Netw., Vol. 11, No. 6, pp. 1347-1360.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0041-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.