Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new direct method is presented which reduces a given high-order representation of a control system with delays to a firstorder form that is encountered in the study of neutral delay-differential systems. Using the polynomial system description (PMD) setting due to Rosenbrock, it is shown that the transformation connecting the original PMD with the first-order form is Fuhrmann’s strict system equivalence. This type of system equivalence leaves the transfer function and other relevant structural properties of the original system invariant.
Rocznik
Tom
Strony
15--22
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Department of Mathematics and Statistics Sultan Qaboos University, PO Box 36 Al-Khodh, 123, Muscat, Oman, boudell@squ.edu.om
Bibliografia
- [1] Boudellioua M.S. (2006): An equivalent matrix pencil for bivariate polynomial matrices. - Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 2, pp. 175-181.
- [2] Byrnes C.I., Spong M.W. and Tarn T.J. (1984): A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. - Math. Syst. Theory, Vol. 17, No. 2, pp. 97-133.
- [3] Fuhrmann P.A. (1977): On strict system equivalence and similarity. - Int. J. Contr., Vol. 25, No. 1, pp.5-10.
- [4] Johnson D.S. (1993): Coprimeness in multidimensional system theory and symbolic computation. -Ph.D. thesis, Loughborough University of Technology, UK.
- [5] Levy B.C. (1981): 2-D polynomial and rational matrices and their applications for the modelling of 2-D dynamical systems. - Ph.D. thesis, Stanford University, USA.
- [6] Pugh A.C., McInerney S.J., Boudellioua M.S. and Hayton G.E. (1998a): Matrix pencil equivalents of a general 2-D polynomial matrix. - Int. J. Contr., Vol. 71, No. 6, pp. 1027-1050.
- [7] Pugh A.C.,McInerney S.J., Boudellioua M.S., Johnson D.S. and Hayton G.E. (1998b): A transformation for 2-D linear systems and a generalization of a theorem of Rosenbrock. - Int. J. Contr., Vol. 71, No. 3, pp. 491-503.
- [8] Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005a): Equivalence and reduction of 2-D systems.-IEEE Trans. Circ. Syst., Vol. 52, No. 5, pp. 371-275.
- [9] Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005b): Zero structures of n-D systems. - Int. J. Contr., Vol. 78, No. 4, pp. 277-285.
- [10] Pugh A.C., McInerney S.J., Hou M. and Hayton G.E. (1996): A transformation for 2-D systems and its invariants. - Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, pp. 2157-2158.
- [11] Rosenbrock H.H. (1970): State Space and Multivariable Theory. - London: Nelson-Wiley.
- [12] Sebek M. (1988): One more counterexample in n-D systems - Unimodular versus elementary operations.-IEEE Trans. Autom. Contr., Vol. AC-33(5), pp. 502-503.
- [13] Zerz E. (2000): Topics in Multidimensional Linear Systems Theory. - London: Springer.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0041-0008