PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical coupling and bistability in inhibitory neuronal networks

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The role of gap junction-mediated electrical coupling in oscillatory networks is not yet fuIly understood. Such coupling is widespread in developing nervous systems and in many structures of the adult brain where it coexists with synaptic inhibition. Our results, both modeling and experimental, indicate that the effect of electrical coupling in networks of rhythmic inhibitory neurons is crucially dependent on the cells' duty cycle. In the Stomatogastric Nervous System, in which ceIls with large duty cycle are interconnected by reciprocal inhibition, electrical coupling may be responsible for masking adult-like properties of the embryonic network by coordinating the neuronal activity into a single rhythm with different phases. In a two-ceIl half-center oscillator model short duty cycle destabilizes antiphase activity which can be re-established by adding electrical coupling. Moreover, such a network expresses bistability of the in-phase and anti-phase patterns in some range of coupling strengths. AIso in a large-scale model network, in which ceIls are interconnected electrically and by synaptic inhibition, multistability of the in-phase and different anti-phase patterns may occur. A possible function of the multistability in the controI of movement is discussed.
Twórcy
autor
autor
autor
autor
  • Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Str., 02-129 Warsaw, Poland, tiaza.bem@ibib.waw.pl
Bibliografia
  • 1. Bem T., Le Feuvre Y., Simmers J., Meyrand P.: Electrical coupling can prevent expression of adult-like properties in an embryonic neural circuit. J. Neurophysiol. 2002, 87(1), 538-547.
  • 2. Bem T., Rinzel J. : Short duty cycle destabilizes a half-center oscillator but gap junctions can restabilize the anti-phase pattern. J. Neurophysiol. 2004, 91, 693-703.
  • 3. Connors B., Long M.A.: Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 2002, 27, 393-418.
  • 4. Fénelon V., Le Feuvre Y., Bem T. and Meyrand P.: Maturation of rhythmic neural networks: a role of central modulatory inputs. J. Physiol. Paris 2003, 97, 59-68.
  • 5. Harris-Warrick R. M., Marder E.: Modulation of neural networks for behavior. Annu. Rev. Neurosci. 1991, 14, 39-57.
  • 6. Kandler K., Katz L.C.: Neuronal coupling and uncoupling in the developing nervous system. Curr. Opin. Neurobiol. 1995, 5, 98-105.
  • 7. Kiehn O., Tresch M.C.: Gap junctions and motor behavior. Trends Neurosci. 2002, 25, 108-115.
  • 8. Le Feuvre Y., Fenelon V. S., Meyrand P.: Central inputs mask multiple adult neural networks within a single embryonic network, Nature, 1999, 402, 660-664.
  • 9. Lewis T., Rinzel J.: Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J. Comp. Neurosci. 2003, 14, 283-309.
  • 10. Selverston A.I., Moulin M.: Oscillatory neural networks. Ann. Rev. Physiol. 1985; 47, 29-48.
  • 11. Van Vreeswijk C., Abbot L.F., Ermentrout B.: When inhibition not excitation synchronizes neural firing. J. Comp. Neurosci. 1994, 1, 313-321.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0030-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.