PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The realization problem for positive multivariable discrete-time systems with delays in the state and inputs is formulated and solved. Conditions for its solvability and the existence of a minimal positive realization are established. A procedure for the computation of a positive realization of a proper rational matrix is presented and illustrated with examples.
Twórcy
autor
  • Faculty of Electrical Engineering, Białystok Technical University ul. Wiejska 45D, 15-351 Białystok, Poland, kaczorek@isep.pw.edu.pl
Bibliografia
  • [1] Benvenuti L. and Farina L. (2004): A tutorial on the positive realization problem. - IEEE Trans. Automat. Contr., Vol. 49, No. 5, pp. 651-664.
  • [2] Busłowicz M. (1982): Explicit solution of discrete-delay equations. - Found. Contr. Eng., Vol. 7, No. 2, pp. 67-71.
  • [3] Busłowicz M. and Kaczorek T. (2004): Reachability and minimum energy control of positive linear discrete-time systems with one delay. - Proc. 12th Mediterranean Conference Control and Automation, Kasadasi, Izmir, Turkey, (on CDROM).
  • [4] Farina L. and Rinaldi S. (2000): Positive Linear Systems - Theory and Applications. -New York: Wiley.
  • [5] Kaczorek T. (2002): Positive 1D and 2D Systems. - London: Springer.
  • [6] Kaczorek T. (2003): Some recent developments in positive systems. - Proc. 7-th Conf. Dynamical Systems Theory and Applications, Łód´z, Poland, pp. 25-35.
  • [7] Kaczorek T. (2004): Realization problem for positive discretetime systems with delay. - Syst. Sci., Vol. 30, No. 4, pp. 117-130.
  • [8] Kaczorek T. (2005): Realization problem for positive continuous-time systems with delays. - Proc. Int. Conf. Systems Engineering, Las Vegas, USA, (on CD-ROM).
  • [9] Kaczorek T. and Busłowicz M. (2004): Minimal realization for positive multivariable linear systems with delay. - Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 2, pp. 181-187.
  • [10] Klamka J. (1991): Controllability of Dynamical Systems. - Dordrecht: Kluwer.
  • [11] Xie G. and Wang L. (2003): Reachability and controllability of positive linear discrete-time systems with time-delays, In: Positive Systems (L. Benvenuti, A. De Santis and L. Farina, Eds.).-Berlin: Springer, pp. 377-384.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0028-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.