PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Linear Control Methods for an AMB System

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contactless nature of active magnetic bearings brings about many advantages over the conventional bearing while industrial real-time applications are often limited by the significant complexity of control algorithms. This paper presents the application of an LQ controller to an active magnetic bearing system (AMB). Two control strategies are presented and compared: local and global. In the first case the rotor is modelled as two separated masses located at the bearing. In the second case rotor stabilization is considered globally as a problem of the rotating rigid body suspended in a magnetic field. The second approach is especially important for high-speed rotating machines. The control performance of both algorithms was analysed using an experimental AMB laboratory system.
Rocznik
Strony
245--255
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Control, AGH University of Science and Technology, al. Mickiewicza 30, 30–095 Cracow, Poland
autor
  • Department of Control, AGH University of Science and Technology, al. Mickiewicza 30, 30–095 Cracow, Poland
Bibliografia
  • [1] Gosiewski Z. (1999): Magnetic Bearings for Rotated Machines. Control and Experimants. — Warsaw: Sci. Library of the Aviation Institute (in Polish).
  • [2] Grega W. (1997): Time-critical integrated control and design systems. — Proc. Int. Conf. Methods and Models in Automatics and Robotics, Międzyzdroje, Poland, pp. 665–670.
  • [3] Joo S. and Seo J.H. (1997): Design and analysis of the nonlinear fedback linearizing control for a electromagnetic suspension system. — IEEE Trans. Contr. Syst. Technol., Vol. 5, No. 1, pp. 135–144.
  • [4] Kim M., Higuchi T., Mizuno T. and Hara H. (1998): Application of a magnetic bearing spindle to non-circular fine boring. — Proc. 6-th Int. Symp. Magnetic Bearings, Cambridge MA, pp. 22–31.
  • [5] Lee A. and Fan Y. (1996): Decentralized PID control of magnetic bearings in rotor system. — Proc. 5-th Int. Symp. Magnetic Bearings, Kanazawa, Japan, pp. 13–18.
  • [6] Levine J., Lottin J., and Ponsart J.C. (1996): A nonlinear approach to the control of magnetic bearings.—IEEE Trans. Contr. Syst. Technol., Vol. 4, No. 5, pp. 524–544.
  • [7] Lin L.C. and Gau Y.-B. (1997): Feedback linearization and fuzzy control for conical magnetic bearing.—IEEE Trans. Contr. Syst. Technol., Vol. 5, No. 4, pp. 417–426.
  • [8] Lottin J., Ponsart J.C. and Mouille P. (1996): Non-linear control of active magnetic bearings. Digital implementation. — Proc. 5-th Int. Symp. Magnetic Bearings, Kanazawa, Japan, pp. 77–82.
  • [9] Math Works Inc. (1999): Real–Time Windows Target User‘s Guide. —Natick, MA: Math. Works Inc.
  • [10] Mitkowski W. (1991): Stabilization of Dynamical Control System.— Warsaw: WNT, (in Polish).
  • [11] Piłat A. (2002): Feedback linearization control of AMB system. — Proc. 8-th Int. Symp. Magnetic Bearings (ISMB-8), Mito, Japan, pp. 465–470.
  • [12] Piłat A. (2002): Control of magnetic levitation systems.—Ph.D. Thesis, AGH-University of Science and Technology, Cracow, Poland.
  • [13] Schweitzer G., Traxler A. and Bleuler H. (1993): Magnetlager. — Heidelberg: Springer.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0016-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.