Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem considered is that of approximate minimisation of the Bolza problem of optimal control. Starting from Bellman's method of dynamic programming, we define the ε-value function to be an approximation to the value function being a solution to the Hamilton-Jacobi equation. The paper shows an approach that can be used to construct an algorithm for calculating the values of an ε-value function at given points, thus approximating the respective values of the value function.
Rocznik
Tom
Strony
177--186
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Faculty of Mathematics, University of Lodz ul. Banacha 22, 90-238 Lodz, Poland, pustelj@math.uni.lodz.pl
Bibliografia
- [1] Adams R.A. (1975): Sobolev spaces. — New York: Academic Press.
- [2] Bryson S. and Levy D. (2001): Central schemes for multidimensional Hamilton-Jacobi Equations.—NASA Techn. Rep., NAS-01-014.
- [3] Cesari L. (1983): Optimization – Theory and Applications. —New York: Springer.
- [4] Fleming W.H. and Rishel R.W. (1975): Deterministic and Stochastic Optimal Control. —New York: Springer.
- [5] Jacewicz E. (2001): An algorithm for construction of ε-value functions for the Bolza control problem. — Int. J. Appl. Math. Comput. Sci., Vol. 11, No. 2, pp. 391–428.
- [6] Karlsen K.H. and Risebro N.H. (2002): Unconditionally stable methods for Hamilton-Jacobi equations. —J. Comput. Phys., Vol. 180, No. 2, pp. 710–735
- [7] Kurganov A. and Tadmor E. (2000): New high-resolution semidiscrete central schemes for Hamilton–Jacobi equations. — J. Comput. Phys., Vol. 160, No. 2, pp. 720–742.
- [8] Szpiro A. and Dupuis P. (2002): Second order numerical methods for first order Hamilton-Jacobi equations. — SIAM J. Numer. Anal., Vol. 40, No. 3, pp. 1136–1183.
- [9] Tang H.Z., Tang T. and Zhang P. (2003): An adaptive mesh redistribution method for nonlinear Hamilton–Jacobi equations in two- and three-dimensions. — J. Comput. Phys., Vol. 188, No. 2, pp. 543–572.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0016-0007