Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A circle criterion is obtained for a SISO Lur'e feedback control system consisting of a nonlinear static sector-type controller and a linear boundary control system in factor form on an infinite-dimensional Hilbert state space H previously introduced by the authors (Grabowski and Callier, 1999). It is assumed for the latter that (a) the observation functional is infinite-time admissible, (b) the factor control vector satisfies a compatibility condition, and (c) the transfer function belongs to H∞(Π+) and satisfies a frequency-domain inequality of the circle criterion type. We also require that the closed-loop system be well-posed, i.e. for any initial state x0 Є H the truncated input and output signals uT, yT belong to L2(0, T) for any T > 0. The technique of the proof adapts Desoer-Vidyasagar's circle criterion method (Desoer and Vidyasagar, 1975, Ch. 3, Secs. 1 and 2, pp. 37-43, Ch. 5, Sec. 2, pp. 139-142 and Ch. 6, Secs. 3 and 4, pp. 172-174), and uses the input-output map developed by the authors (Grabowski and Callier, 2001). The results are illustrated by two transmission line examples: (a) that of the loaded distortionless RLCG type, and (b) that of the unloaded RC type. The conclusion contains a discussion on improving the results by the loop-transformation technique.
Rocznik
Tom
Strony
1387--1403
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
- Institute of Automatics, Academy of Mining and Metallurgy, al. Mickiewicza 30/B1, 30-059 Kraków, Poland
autor
- University of Namur (FUNDP), Department of Mathematics, Rempart de la Vierge 8, B-5000 Namur, Belgium
Bibliografia
- [1] Bucci F. (1999): Stability of holomorphic semigroup systems under boundary perturbations, In: Optimal Control of Partial Differential Equations (K.-H. Hoffmann, G. Leugering and F. Tröltzsch, Eds.). - Proc. IFIP WG 7.2 Int. Conf., Chemnitz, Germany, 20-25 April, 1998, ISNM Series, Vol. 133, Basel: Birkhäuser, pp. 63-76.
- [2] Bucci F. (2000): Frequency domain stability of nonlinear feedback systems with unbounded input operator. - Dyn. Cont. Discr. Impuls. Syst., Vol. 7, No. 3, pp. 351-368.
- [3] Desoer C.A. and Vidyasagar M. (1975): Feedback Systems: Input-Output Properties. - New York: Academic Press.
- [4] Duren P. (1970): Theory of Hp Spaces. - New York: Academic Press.
- [5] Górecki H., Fuksa S., Grabowski P. and Korytowski A. (1989): Analysis and Synthesis of Time-Delay Systems. - Chichester: Wiley.
- [6] Grabowski P. (1990): On the spectral - Lyapunov approach to parametric optimization of distributed parameter systems. - IMA J. Math. Contr. Inf., Vol. 7, No. 4, pp. 317-338.
- [7] Grabowski P. (1994): The LQ controller problem: An example. - IMA J. Math. Contr. Inf., Vol. 11, No. 4, pp. 355-368.
- [8] Grabowski P. and Callier F.M. (1999): Admissible observation operators. Duality of observation and control using factorizations. - Dyn. Cont., Discr. Impuls. Syst., Vol. 6, pp. 87-119.
- [9] Grabowski P. and Callier F.M. (2000): On the circle criterion for boundary control systems in factor form: Lyapunov approach - Facultés Universitaires Notre-Dame de la Paix à Namur, Publications du Département de Mathématique, Research Report 00-07, Namur, Belgium: FUNDP. Submitted to Int. Eqns. Oper. Theory.
- [10] Grabowski P. and Callier F.M. (2001): Boundary control systems in factor form: Transfer functions and input-output maps - Int. Eqns. Oper. Theory, Vol. 41, pp. 1-37.
- [11] Logemann H. (1991): Circle criterion, small-gain conditions and internal stability for infinite-dimensional systems. - Automatica, Vol. 27, No. 4, pp. 677-690.
- [12] Logemann H. and Curtain R.F. (2000): Absolute stability results for well-posed infinite-dimensional systems with low-gain integral control. - ESAIM: Contr. Optim. Calc. Var., Vol. 5, pp. 395-424.
- [13] Pazy A. (1993): Semigroups of Linear Operators and Applications to PDEs. - Berlin: Springer.
- [14] Vidyasagar M. (1993): Nonlinear Systems Analysis, 2nd Ed. - Englewood Cliffs NJ: Prentice-Hall.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0012-0066
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.