Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The following is a short survey of the notion of a well-posed linear system. We start by describing the most basic concepts, proceed to discuss dissipative and conservative systems, and finally introduce J-energy-preserving systems, i.e., systems that preserve energy with respect to some generalized inner products (possibly semi-definite or indefinite) in the input, state and output spaces. The class of well-posed linear systems contains most linear time-independent distributed parameter systems: internal or boundary control of PDE's, integral equations, delay equations, etc. These systems have existed in an implicit form in the mathematics literature for a long time, and they are closely connected to the scattering theory by Lax and Phillips and to the model theory by Sz.-Nagy and Foias. The theory has been developed independently by many different schools, and it is only recently that these different approaches have begun to converge. One of the most interesting objects of the present study is the Riccati equation theory for this class of infinite-dimensional systems (H2- and Hinfty-theories).
Słowa kluczowe
Rocznik
Tom
Strony
1361--1378
Opis fizyczny
Bibliogr. 57 poz., rys.
Twórcy
autor
- Department of Mathematics, Abo Akademi University FIN-20500 Abo, Finland, lof.Staffans@abo.fi
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0012-0064