Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is shown that a certain Bezout operator provides a bijective correspondence between the solutions of the matrix quadratic equation and factorizatons of a certain matrix polynomial G(lambda) (which is a specification of a Popov-type function) into a product of row and column reduced polynomials. Special attention is paid to the symmetric case, i.e. to the Algebraic Riccati Equation. In particular, it is shown that extremal solutions of such equations correspond to spectral factorizations of G(lambda). The proof of these results depends heavily on a new inertia theorem for matrix polynomials which is also one of the main results in this paper.
Rocznik
Tom
Strony
1285--1310
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
autor
- Department of Mathematics, Technion-Israel Institute of Technology Haifa 32000, Israel, kirina@techunix.technion.ac.il
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0012-0061