PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Rough Set-Based Dimensionality Reduction for Supervised and Unsupervised Learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The curse of dimensionality is a damning factor for numerous potentially powerful machine learning techniques. Widely approved and otherwise elegant methodologies used for a number of different tasks ranging from classification to function approximation exhibit relatively high computational complexity with respect to dimensionality. This limits severely the applicability of such techniques to real world problems. Rough set theory is a formal methodology that can be employed to reduce the dimensionality of datasets as a preprocessing step to training a learning system on the data. This paper investigates the utility of the Rough Set Attribute Reduction (RSAR) technique to both supervised and unsupervised learning in an effort to probe RSAR's generality. FuREAP, a Fuzzy-Rough Estimator of Algae Populations, which is an existing integration of RSAR and a fuzzy Rule Induction Algorithm (RIA), is used as an example of a supervised learning system with dimensionality reduction capabilities. A similar framework integrating the Multivariate Adaptive Regression Splines (MARS) approach and RSAR is taken to represent unsupervised learning systems. The paper describes the three techniques in question, discusses how RSAR can be employed with a supervised or an unsupervised system, and uses experimental results to draw conclusions on the relative success of the two integration efforts.
Rocznik
Strony
583--601
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • Unsupervised Learning Qiang SHEN Institute for Representation and Reasoning, Division of Informatics The University of Edinburgh, Edinburgh EH1 1HN, U.K., qiangs@dai.ed.ac.uk
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0012-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.