Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper gives an overview of the formulation and solution of network equations, with emphasis on the historical development of this area. Networks are mathematical models. The three ingredients of network descriptions are discussed. It is shown how the network equations of one-dimensional multi-port networks can be formulated and solved symbolically. If necessary, the network graph is modified so as to obtain an admittance representation for all kinds of multi-ports. N-dimensional networks are defined as graphs with the algebraic structure of N-dimensional vectors. In civil engineering, framed structures in two and three spatial dimensions can be modeled as 3-dimensional or 6-dimensional networks. The separation of geometry from topology is a characteristic feature of such networks.
Rocznik
Tom
Strony
237--269
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
- Institut fur Regelungs- und Steuerungstheorie Technische Universitat Dresden Mommsenstr. 13, D-01062 Dresden, Germany, kr@erss11.et.tu-dresden.de
Bibliografia
- [1] Bellert S. (1962): Topological analysis and synthesis of linear systems. - J. Franklin Inst., Vol. 274, No. 6, pp. 425-443.
- [2] Branin F.H.jr. (1966): The algebraic-topological basis for network analysis and the vector calculus. - Proc. Symp. Generalized Networks, Brooklyn, pp. 453-491.
- [3] Bott R. and Duffin R.J. (1953): On the algebra of networks. - Trans. AMS, Vol. 74, pp. 99-109.
- [4] Cauchy A.L. (1815): Mémoire sur les fonctions qui ne peuvent obtenir que deux valeurs. - J. l’Ecole Polytechnique, Vol. 10, pp. 29-97, reprinted in Oeuvres Complètes, Serie II, Tome I, pp. 91-169.
- [5] Cayley A. (1857): On the theory of the analytical forms called trees. - Philos. Mag., Vol. 4, No. 13, pp. 172-176.
- [6] Chen W.K. (1967): Topological network analysis by algebraic methods. - Proc. IEE, Vol. 114, No. 1, pp. 86-88.
- [7] Chua L.O. and Lin P.-M. (1975): Computer Aided Analysis of Electronic Circuits - Algorithms and Computational Techniques. - New Jersey: Prentice-Hall.
- [8] Coates C.L. (1959): Flow-graph solutions of algebraic equations. - IEEE Trans. Circuit Theory, Vol. 6, No. 2, pp. 170-187.
- [9] Dmitrischin R.W. (1969): Rasčet linejnych cepej s metodom rasširennych strukturnych čisel. - Isv. Vuzov SSSR, Radioelektreonnika, Vol. 12, No. 8, pp. 806-813 (in Russian).
- [10] Duffin R.J. (1959): An analysis of the Wang algebra of networks. - Trans. AMS, Vol. 93, pp. 114-131.
- [11] Firestone B.F. (1933): A new analogy between mechanical and electrical systems. - J. Acoust. Soc. Am., Vol. 4, pp. 249-267.
- [12] Gieben G. and Sansen W. (1991): Symbolic Analysis for Automated Design of Analog Integrated Circuits. - Boston: Kluwer.
- [13] Günther M. and Feldmann U. (1999): CAD-based electric-circuit modeling in industry, Part I and II. - Surv. Math. Ind., Vol. 8, pp. 97-129 and 131-157.
- [14] Hähnle W. (1932): Die Darstellung elektromechanischer Gebilde durch rein elektrische Schalt-bilder. - Wiss. Veröff. a. d. SIEMENS-Konzern, Vol. 11, No. 1, pp. 1-23.
- [15] Jacobi C.G.J. (1841): De formatione et proprietatibus determinantium. - Crelle’s J. f. reine und angew. Mathem., Vol. 22, pp. 285-318.
- [16] Kirchhoff G. (1845): Über den Durchgang eines elektrischen Stromes durch eine Ebene, insbesondere durch eine kreisförmige. - Poggendorfs Annalen der Physik und Chemie, Vol. 64, pp. 497-514.
- [17] Kirchhoff G. (1847): Über die Auflösung der Gleichungen, auf welche man bei der Unter-suchung der linearen Verteilung galvanischer Ströme geführt wird. - Poggendorfs Annalen der Physik und Chemie, Vol.72, pp. 497-508.
- [18] König D. (1936): Theorie der Endlichen und Unendlichen Graphen. - Leipzig: Akademische Verlagsgesellschaft.
- [19] Krätzig W.B. (1998): Tragwerke 2. 3. Aufl. - Berlin: Springer.
- [20] Kron G. (1939): Tensor Analysis of Networks. - New York: Wiley.
- [21] LeCorbeiller P. (1950): Matrix Analysis of Networks. - New York: Wiley.
- [22] Lin P.-M. (1991): Symbolic Network Analysis. - Amsterdam: Elsevier.
- [23] Mason S.J. (1953): Feedback theory; some properties of signal-flow-graphs. - Proc. IRE, Vol. 41, No. 9, pp. 1144-1156.
- [24] Maxwell J.C. (1870): On reciprocal figures, frames and diagrams of forces. - Trans. Roy. Soc. Edinb., Vol. 26, pp. 1-40.
- [25] Maxwell J.C. (1882): Electricity and magnetism I, 3rd Ed, (Ch. VI and Appendix). - Oxford: Clarendon Press.
- [26] Mayeda W. and Seshu S. (1965): Generation of trees without duplication. - IEEE Trans. Circuit Theory, Vol.12, No. 2, pp. 181-185.
- [27] Poincaré H. (1895): Analysis situs. - J. de l’Ecole Polytech., Vol. 2, No. 1, pp. 1-121.
- [28] Reibiger A. and Elst G. (1983): Network theoretic interpretation of multibody systems. - Acta Polytechnica Prague, Vol. 8, pp. 109-129.
- [29] Reinschke K.J. (1988): Multivariable Control - A Graph-Theoretic Approach. - Berlin: Springer-Verlag.
- [30] Reinschke K. and Schwarz P. (1976): Verfahren zur Rechnergestützten Analyse Linearer Netzwerke. - Berlin: Akademie-Verlag.
- [31] Roth J.P. (1959): An application of algebraic topology: Kron’s method of tearing. - Quart. Appl. Math., Vol. 17, No. 1, pp. 1-24.
- [32] Seshu S. and Reed M.B. (1961): Linear Graphs and Electrical Networks. - Reading: Addison-Wesley.
- [33] Synge J.L. (1951): The fundamental theorem of electrical networks. - Quart. Appl. Math., Vol. 9, No. 2, pp. 113-127.
- [34] Tellegen B.D.H. (1948): The gyrator, a new electric network element. - Philips Res. Rep., Vol. 3, pp. 81-101.
- [35] Tellegen B.D.H. (1953): A general network theorem with applications. - Proc. Inst. Radio Engrs. Australia, Vol. 14, pp. 265-270.
- [36] Ting S.L. (1935): On the general properties of electrical network determinants. - Chinese J. Phys., No. 1, pp. 18-40.
- [37] Trent H.M. (1955): Isomorphismus between oriented linear graphs and lumped physical systems. - J. Acoust. Soc. Am., Vol. 27, No. 3, pp. 500-527.
- [38] Trochimenko J.K. (1972): Metod obobščennych čisel i analiz linejnych cepej. - Moscow: Izd. Sov. Radio (in Russian).
- [39] Tsai C.T. (1939): Short cut methods for expanding determinants involved in network problems. - Chinese J. Phys., No. 3, pp. 148-181.
- [40] Veblen O. (1916): Analysis situs. - (The Cambridge Colloquium, Part II, Lectures 1916); New York: AMS, 1922.
- [41] Wang K.T. (1934): On a new method for the analysis of electrical networks. - Nat. Res. Inst. Eng. Acad. Sinica, Mémoir No. 2, pp. 1-11.
- [42] Weyl H. (1923): Repartición de corriente en una red conductora (Introducción al análisis combinatorio). — Revista Matematica Hispano-Americana, Vol. 5, pp. 153-164.
- [43] Weyl H. (1924): Análisis situs combinatorio (continuación). - Revista Matematica Hispano-Americana, Vol. 6, pp. 1-9 and pp. 33-41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0012-0011