Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This contribution deals with different concepts of nonlinear control for mechatronic systems. Since most physical systems are nonlinear in nature, it is quite obvious that an improvement in the performance of the closed loop can often be achieved only by means of control techniques that take the essential nonlinearities into consideration. Nevertheless, it can be observed that industry often hesitates to implement these nonlinear controllers, despite all advantages existing from the theoretical point of view. On the basis of three different applications, a PWM-controlled dc-to-dc converter, namely the Cuk-converter, the problem of hydraulic gap control in steel rolling, and the design of smart structures with piezolelectric sensor and actuator layers, we will demonstrate how one can overcome these problems by exploiting the physical structure of the mathematical models of the considered plants.
Rocznik
Tom
Strony
131--164
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
- Christian Doppler Laboratory for Automatic Control of Mechatronic Systems in Steel Industries, Altenbergerstr. 69, 4040-Linz, Austria
autor
- Department of Automatic Control and Control Systems Technology, Johannes Kepler University of Linz, Altenbergerstr. 69, 4040-Linz, Austria
Bibliografia
- [1] Fleck N.A., Johnson K.L., Mear M.E. and Zhang L.C. (1992): Cold rolling of foil. - Proc. Instn. Mech. Engrs., Part B: J. Engineering Manufacture, Vol. 206, pp. 119-131.
- [2] Frankel T. (1997): The Geometry of Physics. - Cambridge: Cambridge University Press.
- [3] Gurtin M. (1981): Topics in Finite Elasticity. - CBMS/NSF Conf. Series 35, SIAM, Philadelphia.
- [4] Hensel A. and Spittel T. (1990): Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. - Leipzig: Deutscher Verlag für Grundstoffindustrie.
- [5] Isidori A. (1996): Nonlinear Control Systems. - London: Springer.
- [6] Isidori A. and Astolfi A. (1992): Disturbance attenuation and H∞-control via measurement feedback in nonlinear systems. - IEEE Trans. Automat. Contr., Vol. 37, No. 9, pp. 1283-1293.
- [7] Kassakian J.G., Schlecht M.F., Verghese G.C. (1992): Principles of Power Electronics. - New York: Addison Wesley.
- [8] Khalil H.K. (1992): Nonlinear Systems. - New York: Macmillan Publishing Company.
- [9] Knobloch H.W., Isidori A. and Flockerzi D. (1993): Topics in Control Theory. - DMV Seminar Band 22, Basee: Birkhäuser.
- [10] Kugi A. (2000): Non-linear Control Based on Physical Models. - Lecture Notes in Control and Information Sciences 260, London: Springer.
- [11] Kugi A. and Schlacher K. (1999): Nonlinear H∞-controller design for a DC-to-DC power converter. - IEEE Trans. Contr. Syst. Techn., Vol. 7, No. 2, pp. 230-237.
- [12] Kugi A., Schlacher K. and Irschik H. (1999a): Infinite dimensional control of nonlinear beam vibrations by piezoelectric actuator and sensor layers. - Nonlin. Dynam., Vol. 66, pp. 267-269.
- [13] Kugi A., Schlacher K. and Keintzel G. (1999b): Position Control and Active Eccentricity Compensation in Rolling Mills. - Automatisierungstechnik, Oldenbourg, Vol. 47, No. 8, pp. 342-349.
- [14] Lee C.-K. and Moon F.C. (1990): Modal sensors/actuators. - J. Appl. Mech., Trans. ASME, Vol. 57, pp. 434-441.
- [15] Marsden J.E. and Hughes T.J. (1994): Mathematical Foundations of Elasticity. - New York: Dover Publications.
- [16] Merritt H.E. (1967): Hydraulic Control Systems. - New York: Wiley.
- [17] Mohan N., Undeland T.M. and Robbins W.P. (1989): Power Electronics: Converters, Applications, and Design. - New York: Wiley.
- [18] Nijmeijer H. and van der Schaft A.J. (1991): Nonlinear Dynamical Control Systems. - New York: Springer.
- [19] Nowacki W. (1975): Dynamic Problems of Thermoelasticity. - Warsaw: Noordhoff Int. Publishing, PWN-Polish Scientific Publishers.
- [20] Olver P.J. (1993): Applications of Lie Groups to Differential Equations. - New York: Springer.
- [21] Sastry S. (1999): Nonlinear Systems. - New York: Springer.
- [22] Schlacher K. (1998): Mathematical strategies common to mechanics and control. - Zeitschrift für angewandte Mathematik und Mechanik, ZAMM, No. 78, pp. 723-730.
- [23] Schlacher K. and Kugi A. (2000): Control of mechanical structures by piezoelectric actuators and sensors, In: Stability and Stabilization of Nonlinear Systems (Aeyels D., Lamnabhi-Lagarrigue F., van der Schaft A., Eds.). — London: Springer, pp. 275-292.
- [24] Schlacher K., Irschik H. and Kugi A. (1996): Control of nonlinear beam vibrations by multiple piezoelectric layers, In: Proc. IUTAM Symp. Interaction between Dynamics and Control in Advanced Mechanical Systems (van Campen D.H., Ed.). - Dordrecht: Kluwer, pp. 355-363.
- [25] Sira Ramírez H. (1989): A geometric approach to pulse-width modulated control in nonlinear dynamical systems. - IEEE Trans. Automat. Contr., Vol. 34, No. 2, pp. 184-187.
- [26] Tzou H.S. (1992): Active piezoelectric shell continua, In: Intelligent Structural Systems (Tzou H.S. and Anderson G.L., Eds.). - Dordrecht: Kluwer, pp. 9-74.
- [27] van der Schaft A.J. (1993): Nonlinear state space H∞ control theory, In: Essays on Control: Perspectives in the Theory and its Applications (Trentelman H.L. and Willems J.C., Eds.). - Boston: Birkhäuser, pp. 153-190.
- [28] van der Schaft A.J. (2000): L2-Gain and Passivity Techniques in Nonlinear Control. - London: Springer.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0012-0006