PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impedance spectroscopy by means of a digital storage oscilloscope-based measurement system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new system for bioimpedance spectroscopy is presented, which provides an alternative to commercial impedance analysers. Impedance analysers commonly have a limited number of operational modes and are often not well suited to specific applications. Because of its ability to combine an unlimited number of software processing procedures with the use of additional information channels, the system presented enables electrical impedance to be measured precisely. As it is based on digital storage oscilloscope architecture, hardware design is significantly simplified and specific signal detection algorithms may be incorporated.
Twórcy
autor
  • Departament of Biomedical Engineering, Gdańsk University of Technology, Poland
autor
  • Departament of Biomedical Engineering, Gdańsk University of Technology, Poland
autor
  • Dapartament of Electronics and Information Processing, ETRO, Vrije Universiteit, Brussel, Belgium
Bibliografia
  • [1] Littwitz C, Ragheb T„ and Geddes, L.A.: Cell constant of the tetrapolar conductivity cell. Med. Biol. Eng., 1990, 28, 587-590.
  • [2] Geddes L.A.: Who introduced the tetrapolar method for measuring resistance and impedance, IEEE Eng. Med. Biol. Mag., 1996, 15(5), 133-134.
  • [3] Steendijk P., Mur G., van der Velde E.T., and Baan J.: The four-electrode resistivity technique in anisotropic media: Theoretical analysis and application on myocardial tissue in vivo. IEEE Trans. Biomed. Eng., 1993, 40, 1138-1147.
  • [4] Trelles F., Savard P., and Le Guyader R: A new method for measuring myocardial conductivities: the parallel electrodes technique. Proc. Of the 17th IEEE Engineering in Medicine and Biology, 1995, 556-551.
  • [5] Wtorek J., Poliński A., Józefiak L., Bujnowski A.: A new probe for in vivo measurement of skeletal muscle conductivity. In: Proc. of the XIth ICEBI, Oslo, Norway, 2001, 267-270.
  • [6] Wtorek J.: Techniki elektroimpedancyjne w medycynie, Wydawnictwo Politechniki Gdańskiej, seria Monografie nr 43, 2003.
  • [7] Wtorek J. and Grudziński J.: In vivo measurement of skeletal muscle conductivity (in Polish). In: Proc. of the XIIth Conf. Biocybem. and Biomed. Eng., Warsaw, Poland, 2001, 370-373.
  • [8] Roth B.J., Gielen F.L.H., and Wikswo Jr, J.P.: Spatial and temporal frequency-dependent coductivities in volume-conduction calculations for skeletal muscle. Math. Biosci., 1988, 88, 159-189.
  • [9] Bujnowski A., Wtorek J., and Truyen B.: Spectroscopic impedance measurement system using a digital oscilloscope (in Polish), In: Proc. of the XIII National Biocybernetics and Biomedical Engineering Conference, Gdansk, Poland, 2003, 710-715.
  • [10] Kay S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory, Signal processing series, Prentice Hall, New Jersey, 1993.
  • [11] Cohen A.: Biomedical Signal Processing, vol.l, Time and Frequency Domain Analysis, CRC Press, Boca Raton, Florida, 1988.
  • [12] The Matlab® web page, www.mathworks.com.
  • [13] Brandt S.: Data analysis, statistical and computational methods for scientists and engeneers, Polish edition Warszawa: PWN 1988.
  • [14] Moon T. K. and Stirling W. C.: Mathematical methods and algorithms for signal processing Prentice Hall Inc. NJ, 2000.
  • [15] LabView™ www.ni.com.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0011-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.