Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper computer aided stomach diagnosis problems are presented. The subject of the study is electrical signal generated by human stomach and called electrogastrographic (EGG) signal. The non-invasively measured signals were subjected to parametrization, which was performed with one of the time series modelling methods, with linear autoregressive models (AR). Then the obtained sets of numbers were classified with the Support Vector Machine (SVM), which is a relatively new pattern recognition technique and is based on the idea of structural risk minimization, The structure and parameters of algorithm used for classification of the parameterized EGG data are described. The finally obtained effectiveness of the whole system (SVM with the parametrization method applied), amounting to 81%, is promising and, according to the authors' analysis can be improved. The ways of improving of the effectiveness are also outlined in the conclusions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
19--30
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Chair of Electronics and Photonic Metrology, Faculty of Electronics, Wrocław University of Technology, ul. B. Prusa 53/55, 50-371 Wrocław, Poland
autor
- Institute of Telecommunication and Acoustics, Faculty of Electronics, Wrocław University of Technology, Poland
Bibliografia
- [1] Chen J., McCallum R.W.: Electrogastrography: measurement, analysis and prospective applications, Med. Biol. Eng. & Comput. 1991, 29, 339-350.
- [2] Mintchev M.P., Kingma Y.J., Bowes K.L.: Accuracy of cutaneous recordings of gastric electrical activity, Gastroenterology, 1993, 104, 1273-1280.
- [3] Świerczyński Z., Hańczycowa H., Sebzda T„ Leszczyszyn J„ Ponikowski R, Głowacki M.: Akwizycja i analiza sygnałów elektrogastrograficznych, Acta Bio-Optica et Informatica Medica, 1, 1997, 3, 45-50.
- [4] Liang H., Lin Z.: Detection of Delayed Gastric Emptying from Electrogastrograms with Support Vector Machine, IEEE Trans. Biomed. Eng., vol.48, pp. 601-604, May 2001.
- [5] Cristianini N. and Shawe-Taylor J.: An Introduction to Support Vector Machines, Cambridge University Press, 2000.
- [6] Świerczyński Z.: Parametryzacja sygnałów biomedycznych generowanych przez żołądek człowieka, PhD Thesis, Institute of Telecommunication and Acoustics, Faculty of Electronics, Wroclaw University of Technology, Wroclaw 2002.
- [7] Box G. E. P, Jenkins G.M.: Analiza szeregów czasowych. Prognozowanie i sterowanie, PWN, Warszawa 1983.
- [8] Kay S.M.: Modern Spectral Estimation: Theory and Application, Engelwood Cliffs, Prentice Hall, New Jersey 1988.
- [9] Muciek A., Świerczyński Z.: Parametric models of biomedical signals, Proc. of the Third Int. Symposium on Methods and Models in Automation and Robotics, 1996, 2, 683-687.
- [10] Gunn S.R.: Support Vector Machines for Classification and Regression, Technical report, Faculty of Engineering and Applied Science, Department of Electronics and Computer Science, University of Southampton, 1998.
- [11] Vapnik V.: The Nature of Statistical Learning Theory, Springer, N.Y., 1995.
- [12] Hsu C., Chang C., Lin C.: LIBSVM: a library for support vector machines, Department of Computer Science and Information Engineering, National Taiwan University, 2001 (Software available at http:/ /www.csie.ntu.edu.tw/~cjlin/libsvm).
- [13] Świerczyński Z., Zagańczyk A.: Zastosowanie sieci neuronowych i algorytmów genetycznych w komputerowo wspomaganej diagnostyce EGG, Proc. of the Biocybernetics and Biomedical Engineering. XIII Krajowa Konferencja Naukowa, 2003, 231-236.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0011-0021