PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The theoretical and experimental investigations of the airway reopening by simulation of the progression of airflow through a fluid or liquid-filled rigid-walled tube (an initial model of pulmonary airway reopening) were performed. Positive pressure drove the "finger" of the air forward to displace the liquid and to obtain the interfacial movement. The air-liquid interface was assumed to be a simple axisymmetric meniscus. In this study the rigid tube radius was R and the "finger" of the air was (1-m)1/2R, where m was a fraction of the viscous fluid left behind on the walls of the tube. The liquid had constant surface tension and viscosity. The capillary number defined the state of the system (the air-liquid interface). This number is the dimensionless velocity that represents the ratio of the viscous to the capillary stresses. A quasi-steady state solution as a function of this parameter using the flow analysis was examined. A semi-empirical formula for the interface was generated by dimensional analysis. The results suggested that the pressures, required to reopen the collapsible airway and non-collapsible airway with the same radius, are similar in the magnitude. These studies showed that the air-liquid interface in the airway collapsible tube model could be sumulated by the meniscus of the air-liquid flow in a rigid circular tube model of the same radius.
Twórcy
  • Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland, bozena@ibib.waw.pl
Bibliografia
  • [1] Bouhuys A., Jonson B. Alveolar pressure, airflow rate and lung inflatlon in man. J. Apply-Physio1., 1967, 22, 1086-1100.
  • [2] Suki B., Barabasi A.L., Hantos Z., Petek F„ Stanley H.E.,: Size distribution of recruited alveolar volumes in airway reopening. J. Apply. Physiol., 2000, 89, 2030-2040.
  • [3] Frazer D.G.: A model of gas trapping mechanism in dogs. Phys. Med. Biol., 1985, 3, 174-195.
  • [4] Wilson T.A.: Mechanics of edematous lungs. J. Apply. Physiol., 2001, 90, 2088-2093
  • [5] Hsu S.: Role of viscoelascity in the tube model of airway reopening. J. Apply. Physiol., 1994, 76, 2481-2489.
  • [6] Milic-Emili J„ Henderson J.A.M., Dolovich M B., Trop D, Kaneko K„: Regional distribution on inspired gas in the lung. J. Apply. Physiol., 1998, 21, 749-759.
  • [7] Pelosi P, Goldner M„ McKibben A.: Recruitment and de-recruitment during acute respiratoty failure Am. J. Respir. Crit. Care Med., 2001, 164, 122-130.
  • [8] Gaver D.P., Samsel R.W., Solway J.: Effects of surface tension and viscosity on airway reopening. J. Apply. Physiol., 1999, 69,74-85.
  • [9] Reinelt D.A.: Interface conditions for two-phase displacement in Hele-Shaw cells. J. Fluid Mech., 1997 182 219-234.
  • [10] Taylor G.I.: Deposition of a viscous fluid on the wall of a tube. J.Fluid.Mech., no. 10, 1960, 161-165.
  • [11] Fairbrother F. and Stubbs A.: Studies in electroendosmosis. J. Chem. Soc., 1935 1 527-529.
  • [12] Bretherton F.P.: The motion of long bubbles in tubes. J. Fluid Mech., 1961, 10, 166-188.
  • [13] Suk. B„ Andrade J.S, Coughlin M.F., Stamenovic D., Stanley H.E., Sujeer M.K., Zapperi S.:Mathematical modelling of the first inflation of degassed lungs. Ann.Biomed.Eng., 1999, 26, 608-617.
  • [14] Hsu S.-H. and Hou C.-M.: Role of viscoelasticity in the tube model of airway reopening simulations. J. Apply. Physiol., 1996, 80, 1649-1659.
  • [15] Bilek A., Dee K.C., Gaver D.P. III.: Mechanisms of surface — tension — induced epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol., 2003, 94, 770-783.
  • [16] Graver D.P. III, Kute S.M.: A theoretical model study of the influence of fluid stress on a cell adhering to a microchannel wall. Biophys. J., 1998,75,721-733.
  • [17] Dreyfuss D, Saumon G.: Ventilator-induced lung injury: lessons from experimental studies. Am. J. Respir. Crit. Care Med., 1998, 157, 294-323.
  • [18] Ghadiali S.N., Gaver D.P.III: An investigation of pulmonary surfactant physiochemical behaviour under airway reopening conditions. J. Appl. Physiol., 2000, 88, 493-506.
  • [19] Liu M., Tanswell K., Post M.: Mechanical force-induced signal transduction in lung cells. Am.J.Physiol., 1999, 277, L667-L683.
  • [20] Levitzky M.G.: Pulmonary Physiology. New York, MacGraw-Hill, 1995.
  • [21] Hubmayr R.D.: Perspective on lung injury and recruitment; a sceptical look at the opening and collapse story. Am.J.Respir.Crit.Care Med., 2002, 165, 1647-1653.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0011-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.