PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polypropylene surface modified hollow fibers for immunoisolation of cells

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Membranes preventing the tissue overgrowth as well as toxic influence of the environment on cells encapsulated within them were elaborated. The permiselective polypropylene hollow fibers were modified using different methods of silanization, and the effect of silanization on the membrane transport properties as well as on the tissue overgrowth was assessed, in the light of their perspective application in encapsulation of the cells. The membrane's pressure silanization has been found to result in obtaining membranes allowing to decrease and/ or delimit the diffusive transport through the membrane of large solutes without a simultaneous transport change for small solutes. The applied different types of membrane's silanization allowed to avoid a massive tissue overgrowth during the implantation. The membranes have been found to comply with the requirements for membranes applied in immunoisolation.
Twórcy
  • Institute of Biocybernetics and Biomedical Engineering, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
  • Institute of Biocybernetics and Biomedical Engineering, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
autor
  • Institute of Biocybernetics and Biomedical Engineering, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland; Medical Center of Postgraduate Education, Departament of Clinical Cytology, Warsaw, Poland
Bibliografia
  • [1] Lanza R.P., Borland K.M., Stanik J.E., Appel M.C., Solomon B.A., Chick W.: Transplantation of encapsulated canine islets into spontaneously diabetic BB/Wor rats without immunosuppression. Endocrinology 1992, 131, 637-642.
  • [2] Delaunay C., Darquy S., Honiger J., Capron F., Rouault C., Reach G.: Glucose insulin kinetics of a bioartificial pancreas made of an AN69 hydrogel hollow fiber containing porcine islets and implanted in diabetic mice. Artificial Organs 1998, 22, 291-299.
  • [3] Li R.H., Williams S., White M., Rein D.: Dose control with cell lines used for encapsulated cell therapy. Tissue Engineering 1999, 5, 453-466.
  • [4] Li R.H., White M„ Williams S., Hazlett T.: Polyvinyl alcohol synthetic polymer foams as scaffolds for cell encapsulation. Journal of Biomaterials Science, Polymer Edition 1998, 9, 239-258.
  • [5] Hollingshead M.G., Alley M.C., Camalier R.F., Abbot B.J., Mayo J.G., Malspeis L., Grever M.R.: In vivo cultivation of tumor cells in hollow fibers. Life Sciences 1995, 57, 131-141.
  • [6] Lanza R.P., Beyer A.M., Staruk J.E., Chick W.: Biohybrid artificial pancreas. Transplantation 1993, 56, 1067-1072.
  • [7] Sharp D.W., Swanson C.J., Olack B.J. et al.: Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects. Diabetes 1994, 43, 1167.
  • [8] Aebischer P„ Buchser E., Joseph J.M., Favre J., De Tribolet N., Lysaght M„ Rudnick S., Goddard M.: Transplantation in humans of encapsulated xenogenic cells without immunosuppresion. Transplantation 1994, 58, 1275-1277.
  • [9] Sagen J., Wang H., Tresco P.A., Aebischer P.: Transplants of immunologically isolated xenogenic chromaffin cells provide a long term source of neuroactive substances. J. Neurosci. 1993, 13, 2415-2423.
  • [10] Xu Ze Qi, Hollingshead M.G., Borgel S„ Elder C., Khilevich A., Flavin M.T.: In vivo anti-HIV activity of (+) — calanolide A in the hollow fiber mouse model. Bioorganic & Medicinal Chemistry Letters 1999, 9, 133-138.
  • [11] Prevost P., Flori S., Collier C, Muscat E., Rolland E.: Application of AN69 hydrogel to islet encapsulation. Annals of the New York Academy of Sciences 1997, 831, 344-349.
  • [12] Schoichet M.S., Winn S.R., Athavale S., Harris J.M., Gentile F.T.: Poly(ethylene oxide) — grafted thermoplastic membranes for use as cellular hybrid bio-artificial organs in the central nervous system. Biotechnology and Bioengineering 1994, 43, 563-572.
  • [13] Shoichet M., Rein D.: In vivo biostability of a polymeric hollow fibre membrane for cell encapsulation. Biomaterials 1996, 17, 285-290.
  • [14] Clark H., Barbari T.A., Stump K., Rao G.: Histologic evaluation of the inflammatory responses around implanted hollow fiber membranes. J. Biomed. Mater Res. 2000, 52, 183-192.
  • [15] Granicka L.H., Migaj M., Woźniewicz B., Zawitkowska T., Tołloczko T, Weryński A., Kawiak J. el: Encapsulation of parathyroid cells in hollow fibers: a preliminary report. Folia Histochemica et Cytobiologica; 2000, 38, 129-131.
  • [16] Granicka L.H., Kawiak J., Głowacka E., Weryński A.: Encapsulation of OKT3 Cells in Hollow Fibers. ASAIO J 1996, 42, 863-866.
  • [17] Wu S.: Polymer Interface and adhesion, M. Dekker, New York 1982.
  • [18] Conti M., Donati G., Cianciolo G., Stefoni S., Samori B.: Force spectroscopy study of the adhesion of plasma proteins the surface of a dialysis membrane: Role of the nanoscale surface hydrophobicity and topography. J. Biomed. Mater Res. 2002, 61, 370-379.
  • [19] Menon M.K., Zydney A.L.: Effect of ion binding on protein transport through ultrafiltration membranes. Biotechnology and Bioengineering 1999, 63, 298-307.
  • [20] Granicka L.H., Kawiak J., Snochowski M., Wójcicki J.M., Sabalińska S., Weryński A.: Polypropylene hollow fiber for cells isolation. Methods for evaluation of diffusive transport and quality of cells encapsulation. Artificial Cells, Blood Substitutes and Immobilization Biotechnology 2003, 31, 251-264.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0011-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.