Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Unlike classical physical lung models, the model presented in the paper makes it possible to realize any input impedance of lungs representing their complex mechanical structure. The crucial element of the model is the electropneumatic gyrator converting the input impedance of the electrical network, connected to electrical ports of the gyrator, into the inversely proportional pneumatic impedance obtained in its pneumatic channel. The gyrator is built up as a cross-connection of electrically controlled flow and current sources. Experimental investigations demontrated a very good static and dynamic accuracy of the gyratory conversion. The characteristic pressure and flow courses illustrating dynamical behavior of the gyratory model of lungs are also included.
Wydawca
Czasopismo
Rocznik
Tom
Strony
47--54
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
autor
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
- [1] Nunn J.F.: Kliniczna fizjologia oddychania. PZWL, Warszawa 1981, 121.
- [2] Avanzolini G„ Barbini R: A comparative evaluation of three on-line identification methods for a respiratory mechanical model. IEEE Trans. Biomed. Eng., 1985. 32, 957-963.
- [3] Baker A.B., Hahn G.E.W.: An analogue study of controlled ventilation. Respir. Physiol., 1974, 22, 227-239.
- [4] Bergman N.A, Fourier analysis of effects of varying pressure waveforms in electrical lung analogs Acta Anaesthesiol. Scand., 1984, 28, 178-181.
- [5] Campbell D„ Brown J.: The electrical analog of lung. Br. J. Anaesth., 1963, 35 684-693.
- [6] Eyles J., Pimmel R. L.: Estimating respiratory mechanical pameters in parallel compartment models. IEEE Trans. Biomed. Eng., 1981, 28, 313-317.
- [7] Marini J.J., Crooke III P.S., Truwit J.D.: Determinants and limits of pressure-preset ventilation: a mathematical model of pressure control. J. Appl. Physiol., 1989 67 1081-1092.
- [8] Otis A.B., McKerrow C.B., Barlett R.A., Mead J., Mcllroy M.B., Selvestone N.J., Radford E.P.: Mechanical factors in distribution of pulmonary ventilation. J. Appl. Physiol., 1956, 8, 427-443.
- [9] Venegas J.G, Equivalent circuit analysis of high-frequency ventilators including a new high-impedance flow-interrupting ventilator. IEEE Trans. Biomed. Eng, 1986, 33, 420-427.
- [10] Wald A.A., Murphy T.W., Mazzia V.D.: A theoretical study of controlled ventilation. IEEE Trans. Biomed. Eng., 1968, 15, 237-248.
- [11] Rossi, A, Gottfried S.B., Higgs B.D., Zocchi L„ Grassino A., Milic-Emil, J.: Respirator mechanics in mechanically ventilated patients with respiratory failure. J. Appl. Physiol. 58, 1849-1858.
- [12] Lutchen K.R., Saidel G.M.:Estimation of mechanical parameters in multicompartment models applied to normal and obstructed kings during tidal breathing. IEEE Trans. Biomed. Eng., 1986, 33, 878-887.
- [13] Mitra S.K.: Analysis and Synthesis of Linear Active Networks. John Wiley & Sons, Inc., New York, 1969.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0003-0056