PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards decision rule based on closer symmetric neighborhood

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relatively new k Nearest Centroid Neighbor (k-NCN) decision rule uses an interesting concept of surrounding neighborhood, that is, such a neighborhood which takes into account not only the proximity of neighbors but also their spatial location. In the paper we propose a new decision rule, called k Near Surrounding Neighbors (k-NSN), which "improves" the neighborhood used in k-NCN with respect to both mentioned aspect. We tested several methods, k-NN included, each in a multidecision and in two binary decomposition schemes, on a few UCI datasets and a large ferrite core dataset, to show attractiveness of the presented concept in applications where the prediction accuracy is of utmost importance.
Twórcy
autor
Bibliografia
  • [1] Fukunaga K.: Introduction to statistical pattern recognition. Academic Press: San Diego, CA, 1990.
  • [2] Wilson D.L.: Asymptotic properties of nearest neighbour rules using edited data. IEEE Transactions on Systems, Man and Cybernetics, July 1972, SMC-2, 3, 408-421.
  • [3] Tomek I.: An experiment with the edited nearest-neighbour rule. IEEE Trans, on Systems, Man and Cybernetics, 1976, SMC-6, 6, 448-452.
  • [4] Dudani S.A.: The distance weighted k-nearest neighbour rule. IEEE Transactions on Systems, Man and Cybernetics, 1976, SMC-6, 325-327.
  • [5] Jóźwik A.: A learning scheme for a fuzzy k-NN rule. Pattern Recognition Letters, 1983, 1, 287-289.
  • [6] Short R.D., Fukunaga K.: The optimal distance measure for nearest neighbor classification. IEEE Transactions on Information Theory, 1981,27, 622-627.
  • [7] Chaudhuri B.B.: A new definition of neighbourhood of a point in multi-dimensional space. Pattern Recognition Letters, 1996, 17, 11-17.
  • [8] Sanchez J.S., Pla F., Ferri F.J.: On the use of neighbourhood-based non-parametric classifiers. Pattern Recognition Letters, 1997, 18, 1179-1186.
  • [9] Sanchez J.S., Pla F„ Ferri F.J.: Improving the k-NCN classification rule through heuristic modifications. Pattern Recognition Letters, 1998, 19, 1165-1170.
  • [10] Jóźwik A., Vernazza G.: Recognition of leucocytes by a parallel k-NN classifiers. Lecture Notes of ICB Seminar, 138-153, Warsaw 1988.
  • [11] Dietterich T.G., Bakiri G.: Error-correcting output codes: A general method of improving multiclass inductive learning programs. Proceedings of the Ninth National Conference on Artificial Intelligence (AAA-91), Anaheim, CA: AAAI Press, 1991.
  • [12] Bay S.D.: Combining nearest neighbor classifiers through multiple feature subsets. Proceedings of the Fifteenth International Conference on Machine Learning. Madison, WI, 1998, 37-45.
  • [13] Kong E.B., Dietterich T.G.: Error-correcting output coding corrects bias and variance. Proceedings of the Twelfth International Conference on Machine Learning, 313-321, Tahoe City, CA. Morgan Kaufmann, 1995.
  • [14] Moreira M„ Mayoraz E.: Improved pairwise coupling classification with correcting classifiers. Proceedings of the Tenth European Conference on Machine Learning, Chemnitz, Germany 1998 160-171.
  • [15] Masuli F., Valentini G.: Comparing decomposition methods for classification. In: R.J. Howlett and L.C. Jain, editors, KES’2000, Fourth International Conference on Knowledge-Based Intelligent Engineering Systems & Allied Technologies, Piscataway, NJ, 2000, 788-791.
  • [16] Skalak D.B.: Prototype and feature selection by sampling and random mutation hill climbing algorithms. In Machine Learning: Proceedings of the Eleventh International Conference, Morgan Kaufmann, 1994, 293-301.
  • [17] Jóźwik A., Chmielewski L., Skłodowski M„ Cudny W.: A parallel net of (1-NN, k-NN) classifiers for optical inspection of surface defects in ferrites. Machine Graphics and Vision 1998 7 (1-2) 99-112.
  • [18] Merz C„ Murphy P.M.: UCI repository of machine learning databases, [http://www.ics.uci.edu/mleam/MLRepository.html], 1996.
  • [19] Jóźwik A., Chmielewski L., Cudny W., Skłodowski M.: A 1-NN preclassifier for fuzzy k-NN rule. Proceedings of the Thirteenth International Conference on Pattern Recognition, vol. IV, track D, Parallel and Connectionist Systems, 1996, 234-238, Vienna, Austria, August 25-29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0003-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.