Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are illustrated by a numerical example.
Rocznik
Tom
Strony
151--160
Opis fizyczny
Bibliogr. 38 poz., wykr.
Twórcy
autor
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Plac Politechniki 1, 00–661 Warsaw, Poland
autor
- Department of Mathematics, Technical University of Rzeszów, ul. W. Pola 2, 35–959 Rzeszów, Poland
autor
- Department of Mathematics, Technical University of Rzeszów, ul. W. Pola 2, 35–959 Rzeszów, Poland
Bibliografia
- [1] Ahmed N.V. and Radaideh S.M. (1997): A powerful numerical technique solving Zakai equation for nonlinear filtering.— Dynam. Contr., Vol. 7, No. 3, pp. 293–308.
- [2] Atar R., Viens F. and Zeituni O. (1999): Robustness of Zakai’s equation via Feynman-Kac representation, In: Stochastic Analysis, Control, Optimization and Applications (W.M. McEneaney, G.G. Yin and Q. Zhang, Eds.). —Boston: Birkhäuser, pp. 339–352.
- [3] Beneš V.E. (1981): Exact finite-dimensional filters for certain diffusions with nonlinear drift. — Stochastics, Vol. 5, No. 1–2, pp. 65–92.
- [4] Bensoussan A., Głowi´nski R. and Rascanu A. (1990): Approximation of the Zakai equation by the splitting up method.— SIAM J. Contr. Optim., Vol. 28, No. 6, pp. 1420–1431.
- [5] Brzeźniak Z. and Flandoli F. (1995): Almost sure approximation of Wong-Zakai type for stochastic partial differential equations.— Stoch. Proc. Appl., Vol. 55, No. 2, pp. 329–358.
- [6] Bucy R.S. (1965): Nonlinear filtering theory. — IEEE Trans. Automat. Contr., Vol. 10, No. 2, pp. 198–212.
- [7] Chaleyat-Maurel A., Michel D. and Pardoux E. (1990): Un théorème d’unicité pour l’équation de Zakai. — Stoch. Rep., Vol. 29, No. 1, pp. 1–12.
- [8] Cohen de Lara M. (1998): Reduction of the Zakai equation by invariance group techniques. — Stoch. Proc. Appl., Vol. 73, No. 1, pp. 119–130.
- [9] Crisan D., Gaines J. and Lyons T. (1998): Convergence of a branching particle method to the solution of the Zakai equation. — SIAM J. Appl. Math., Vol. 58, No. 5, pp. 1568–1590.
- [10] Dawidowicz A.L. and Twardowska K. (1995): On the relation between the Stratonovich and Itô integrals with integrands of delayed argument. — Demonstr. Math., Vol. 28, No. 2, pp. 456–478.
- [11] Elliot R.J. and Głowiński R. (1989): Approximations to solutions of the Zakai filtering equation.—Stoch. Anal. Appl., Vol. 7, No. 2, pp. 145–168.
- [12] Elliot R.J. and Moore J. (1998): Zakai equations for Hilbert space valued processes. — Stoch. Anal. Appl., Vol. 16, No. 4, pp. 597–605.
- [13] Elsgolc L.E. (1964): Introduction to the Theory of Differential Equations with Delayed Argument.—Moscow: Nauka (in Russian).
- [14] Florchinger P. and Le Gland F. (1991): Time-discretization of the Zakai equation for diffusion processes observed in correlated noise. — Stoch. Stoch. Rep., Vol. 35, No. 4, pp. 233–256.
- [15] Gyöngy I. (1989): The stability of stochastic partial differential equations and applications. Theorems on supports, In: Lecture Notes in Mathematics (G. Da Prato and L. Tubaro, Eds.). —Berlin: Springer, Vol. 1390, pp. 99–118.
- [16] Gyöngy I. and Pröhle T. (1990): On the approximation of stochastic partial differential equations and Stroock-Varadhan’s support theorem. — Comput. Math. Appl., Vol. 19, No. 1, pp. 65–70.
- [17] Ikeda N. and Watanabe S. (1981): Stochastic Differential Equations and Diffusion Processes. — Amsterdam: North-Holland.
- [18] Itô K. (1996): Approximation of the Zakai equation for nonlinear filtering theory. — SIAM J. Contr. Optim., Vol. 34, No. 2, pp. 620–634.
- [19] Itô K. and Nisio M. (1964): On stationary solutions of a stochastic differential equations. — J. Math. Kyoto Univ., Vol. 4, No. 1, pp. 1–75.
- [20] Itô K. and Rozovskii B. (2000): Approximation of the Kushner equation. — SIAM J. Control Optim., v.38, No.3, pp.893-915.
- [21] Kallianpur G. (1980): Stochastic Filtering Theory. — Berlin: Springer.
- [22] Kallianpur G. (1996): Some recent developments in nonlinear filtering theory, In: Itô stochastic calculus and probability theory (N. Ikeda, Ed.).— Tokyo: Springer, pp. 157–170.
- [23] Kloeden P. and Platen E. (1992): Numerical Solutions of Stochastic Differential Equations.—Berlin: Springer.
- [24] Kolmanovsky V.B. (1974): On filtration of certain stochastic processes with aftereffects. — Avtomatika i Telemekhanika, Vol. 1, pp. 42–48.
- [25] Kolmanovsky V., Matasov A. and Borne P. (2002): Mean-square filtering problem in hereditary systems with nonzero initial conditions.—IMA J. Math. Contr. Inform., Vol. 19, No. 1–2, pp. 25–48.
- [26] Kushner H.J. (1967): Nonlinear filtering: The exact dynamical equations satisfied by the conditional models. — IEEE Trans. Automat. Contr., Vol. 12, No. 3, pp. 262–267.
- [27] Liptser R.S. and Shiryayev A.N. (1977): Studies of Random Processes I and II.—Berlin: Springer.
- [28] Lototsky S., Mikulevičius R. and Rozovskii B. (1997): Nonlinear filtering revisited: A spectral approach. — SIAM J. Contr. Optim., Vol. 35, No. 2, pp. 435–461.
- [29] Pardoux E. (1975): Equations aux dérivées partielles stochastiques non linéaires monotones. Etude de solutions fortes de type Itô.—Ph. D. thesis, Sci. Math., Univ. Paris Sud.
- [30] Pardoux E. (1989): Filtrage non linéaire et équations aux dérivées partielles stochastiques associétes. — Preprint, Ecole d’Été de Probabilités de Saint-Fleur, pp. 1–95.
- [31] Pardoux E. (1979): Stochastic partial differential equations and filtering of diffusion processes. — Stochastics, Vol. 3, pp. 127–167.
- [32] Sobczyk K. (1991): Stochastic Differential Equations with Applications to Physics and Engineering. — Dordrecht: Kluwer.
- [33] Twardowska K. (1993): Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions.— Dissertationes Math., Vol. 325, pp. 1–54.
- [34] Twardowska K. (1995): An approximation theorem of Wong-Zakai type for nonlinear stochastic partial differential equations.—Stoch. Anal. Appl., v.13, No.5, pp.601-626.
- [35] Twardowska K. and Pasławska-Południak M. (2003): Approximation theorems of Wong-Zakai type for stochastic partial differential equations with delay arising in filtering problems.— to appear.
- [36] Twardowska K. (1991): On the approximation theorem of Wong-Zakai type for the functional stochastic differential equations. — Probab. Math. Statist., Vol. 12, No. 2, pp. 319–334.
- [37] Wong E. and Zakai M. (1965): On the convergence of ordinary integrals to stochastic integrals. — Ann. Math. Statist., Vol. 36, pp. 1560–1564.
- [38] Zakai M. (1969): On the optimal filtering of diffusion processes. —Z. Wahrsch. Verw. Geb., Vol. 11, pp. 230–243.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0002-0013