PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Interaction Between Theory, Experiments, and Simulation in Developing Practical Learning Control Algorithms

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Iterative learning control (ILC) develops controllers that iteratively adjust the command to a feedback control system in order to converge to zero tracking error following a specific desired trajectory. Unlike optimal control and other control methods, the iterations are made using the real world in place of a computer model. If desired, the learning process can be conducted both in the time domain during each iteration and in repetitions, making ILC a 2D system. Because ILC iterates with the real world, and aims for zero error, the field pushes the limits of theory, modeling, and simulation, to predict the behavior when applied in the real world. It is the thesis of this paper that in order to make significant progress in this field it is essential that the research effort employ a coordinated simultaneous synergistic effort involving theory, experiments, and serious simulations. Otherwise, one very easily expends effort on something that seems fundamental from the theoretical perspective, but in fact has very little relevance to the performance in real world applications.
Rocznik
Strony
101--111
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
  • Department of Mechanical Engineering Columbia University New York, New York 10027, USA, RWL4@columbia.edu
Bibliografia
  • [1] Amann N., Owens D.H. and Rogers E. (1998): Predictive optimal iterative learning control. — Int. J. Contr., Vol. 69, No. 2, pp. 203–226.
  • [2] Arimoto S., Kawamura S. and Miyazaki F. (1984): Bettering Operation of Robots by Learning.—J. Robot. Syst., Vol. 1, No. 2, pp. 123–140.
  • [3] Åström K., Hagander P. and Strenby J. (1980): Zeros of sampled systems. — Proc. 19th IEEE Conf. Decision and Control, pp. 1077–1081.
  • [4] Bien Z. and Xu J.-X. (1998): Iterative Learning Control: Analysis, Design, Integration, and Applications. — Boston: Kluwer.
  • [5] Casalino G. and Bartolini G. (1984): A learning procedure for the control of movements of robotic manipulators.—Proc. IASTED Symp. Robotics and Automation, Amsterdam, pp. 108–111.
  • [6] Chang C.K., Longman R.W. and Phan M. (1992): Techniques for improving transients in learning control systems. — Adv. Astronaut. Sci., Vol. 76, pp. 2035–2052.
  • [7] Craig J.J. (1984): Adaptive control of manipulators through repeated trials. — Proc. American Control Conference, San Diego, pp. 1566–1573.
  • [8] Elci H., Longman R.W., Phan M., Juang J.-N. and Ugoletti R. (1994a): Discrete frequency based learning control for precision motion control. — Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, San Antonio, TX, Vol. 3, pp. 2767–2773.
  • [9] Elci H., Phan M., Longman R.W., Juang J.-N. and Ugoletti R. (1994b): Experiments in the use of learning control for maximum precision robot trajectory tracking. — Proc. Conf. Information Science and Systems, Princeton, NJ, pp. 951–958.
  • [10] Elci H., Longman R.W., Phan M., Juang J.-N. and Ugoletti R. (1994c): Automated learning control through model updating for precision motion control. — Adapt. Struct. Comp. Mat.: Anal. Appl., ASME, AD-Vol. 45/MD-Vol. 54, pp. 299–314.
  • [11] Hara S. and Yamamoto Y. (1985): Synthesis of repetitive control systems and its applications.—Proc. 24th IEEE Conf. Decision and Control, Fort Lauderdale, Florida, pp. 326–327.
  • [12] Hara S., Omata T. and Nakano M. (1985): Stability of repetitive control systems. — Proc. 24th IEEE Conf. Decision and Control, Fort Lauderdale, Florida, pp. 1387-1392.
  • [13] Hsin Y.P., Longman R.W., Solcz E.J. and de Jong J. (1997a): Experiments bridging learning and repetitive control. — Adv. Astronaut. Sci., Vol. 95, pp. 671–690.
  • [14] Hsin Y.P., Longman R.W., Solcz E.J. and de Jong J. (1997b): Experimental comparisons of four repetitive control algorithms.— Proc. 31st Ann. Conf. Information Sciences and Systems, Baltimore, Maryland, pp. 854–860.
  • [15] Hsin Y.P., Longman R.W., Solcz E.J. and de Jong J. (1998): Stabilization due to finite word length in repetitive and learning control. — Adv. Astronaut. Sci., Vol. 97, pp. 817–836.
  • [16] Huang Y.-C. and Longman R.W. (1996): The source of the often observed property of initial convergence followed by divergence in learning and repetitive control. — Adv. Astronaut. Sci., Vol. 90, pp. 555–572. A modified version appears in Intell. Automat. Soft Comput., Special Issue on Learning and Repetitive Control, Vol. 8, No. 2, pp. 107–128.
  • [17] Inoue T., Nakano M. and Iwai S. (1981): High accuracy control of a proton synchrotron magnet power supply.—Proc. 8th IFACWorld Congress, Kyoto, Japan, Vol. 20, pp. 216–221.
  • [18] Jang H.S. and Longman R.W. (1994): A new learning control law with monotonic decay of the tracking error norm. — Proc. 32nd Ann. Allerton Conf. Communication, Control, and Computing, Monticello, Illinois, pp. 314–323.
  • [19] Jang H.S. and Longman R.W. (1996): Design of digital learning controllers using a partial isometry.—Adv. Astronaut. Sci., Vol. 93, pp. 137–152.
  • [20] Lee-Glauser G., Juang J.-N. and Longman R.W. (1996): Comparison and combination of learning controllers: Computational enhancement and experiments. — J. Guid., Contr. Dynam., Vol. 19, No. 5, pp. 1116–1123.
  • [21] Longman R.W. (1998): Designing iterative learning and repetitive controllers, In: Iterative Learning Control: Analysis, Design, Integration, and Applications, Chapter 7 (Z. Bien and J.-X. Xu, Eds.).—Kluwer Academic Publishing, Norwell, MA, pp. 107–146.
  • [22] Longman R.W. (2000): Iterative learning control and repetitive control for engineering practice. — Int. J. Control, Special Issue on Iterative Learning Control, Vol. 73, No. 10, pp. 930–954.
  • [23] Longman R.W. and Huang Y.-C. (1998): Use of unstable repetitive control for improved tracking accuracy. — J. Chinese Soc. Mech. Eng., Special Issue on Dynamics and Control, Vol. 19, No. 1, pp. 81–93.
  • [24] Longman R.W. and Songchon T. (1999): Trade-offs in designing learning/repetitive controllers using zero-phase filtering for long term stability. — Adv. Astronaut. Sci., Vol. 102, pp. 243–263.
  • [25] Longman R.W., Chang C.-K. and Phan M. (1992): Discrete time learning control in nonlinear systems. — A Collection of Technical Papers, 1992 AIAA/AAS Astrodynam. Spec. Conf., Hilton Head, South Carolina, pp. 501–511.
  • [26] Middleton R.H., Goodwin G.C. and Longman R.W. (1985): A method for improving the dynamic accuracy of a robot performing a repetitive task. — Int. J. Robot. Res., Vol. 8, No. 5, pp. 67–74.
  • [27] Moore K. (1993): Iterative Learning Control for Deterministic Systems.—London: Springer.
  • [28] Moore K. and Xu J.-X. (Eds.) (2000): Special Issue on Iterative Learning Control.—Int. J. Contr., Vol. 73, No. 10.
  • [29] Nakano M. and Hara S. (1986): Microprocessor-based repetitive control, In: Microprocessor-Based Control Systems. —Amsterdam: D. Reidel Publ. Comp., pp. 279–296.
  • [30] Omata T., Nakano M. and Inoue T. (1984): Applications of repetitive control method to multivariable systems. — Trans. SICE, Vol. 20, No. 9, pp. 795–800.
  • [31] Owens D.H. (1977): Stability of multipass processes. — Proc. IEE, Vol. 124, No. 11, pp. 1079–1082.
  • [32] Owens D.H., Amann N., Rogers E. and French M. (2000): Analysis of linear iterative learning control schemes—A 2D systems/repetitive processes approach. — Multidim. Syst. Signal Process., Vol. 11, No. 1–2, pp. 125–177.
  • [33] Phan M.Q. and Longman R.W. (1988): A mathematical theory of learning control for linear discrete multivariable systems. —Proc. AIAA/AAS Astrodynam. Spec. Conf., Minneapolis, Minnesota, pp. 740–746.
  • [34] Phan M.Q., Longman R.W. and Moore K.L. (2000): A unified formulation of linear iterative learning control. — Adv. Astronaut. Sci., Vol. 105, pp. 93-111.
  • [35] Plotnik A.M. and Longman R.W. (1999): Subtleties in the use of zero-phase low-pass filtering and cliff filtering in learning control.—Adv. Astronaut. Sci., Vol. 103, pp. 673–692.
  • [36] Rogers E. and Owens D.H. (1992): Stability Analysis for Linear Repetitive Processes.—Berlin: Springer.
  • [37] Tomizuka M., Tsao T.-C. and Chew K.-K. (1989): Analysis and synthesis of discrete time repetitive controllers. — J. Dynam. Syst. Meas. Contr., Vol. 111, No. 3, pp. 353–358.
  • [38] Uchiyama M. (1978): Formulation of High-Speed Motion Pattern of a Mechanical Arm by Trial. — Trans. Socİnstrum. Contr. Eng., Vol. 14, pp. 706–712 (in Japanese).
  • [39] Wirkander S.-L. and Longman R.W. (1999): Limit cycles for improved performance in self-tuning learning control. — Adv. Astronaut. Sci., Vol. 102, pp. 763–781.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0002-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.