Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study a thermo-mechanical system consisting of an elastic membrane to which a shape-memory rod is glued. The slow movements of the membrane are controlled by the motions of the attached rods. A quasi-static model is used. We include the elastic feedback of the membrane on the rods. This results in investigating an elliptic boundary value problem in a domain W is subset R2 with a cut, coupled with non-linear equations for the vertical motions of the rod and the temperature on the rod. We prove the existence of a unique global weak solution to this problem using a fixed point argument.
Rocznik
Tom
Strony
479--486
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Mathematics Department, California State University, Northridge, CA 91330-8313, USA
autor
- Institut Elie Cartan, Université Henri Poincaré Nancy I, B. P. 239, 54506 Vandoeuvre les Nancy Cedex, France
Bibliografia
- [1] Brokate M. and Sprekels J. (1996): Hysteresis and Phase Transitions. - Berlin: Springer Verlag.
- [2] Bubner N. (1995): Modellierung dehnungsgesteuerter Phasenübergänge in Formgedächtnislegierungen. - Ph.D. Thesis, Universität Essen.
- [3] Bubner N., Horn W. and Sokołowski J. (2001): Weak solutions to joined non-linear systems of PDE. - J. Appl. Math. Phys. (ZAMP), Vol. 52, No. 5, pp. 713-729.
- [4] Bubner N. and Sprekels J. (1998): Optimal control of martensitic phase transitions in a deformation driven experiment on shape memory alloys. - Adv. Math. Sci. Appl., Vol. 8, No. 1, pp. 299-325.
- [5] Hanouzet B. and Joly J.-L. (1979): Méthodes d’ordre dans l’interprétattion de certaines inéquations variationelles et applications. - J. Funct. Anal., Vol. 34, No. 2, pp. 217-249.
- [6] Horn W. and Sokołowski J. (2000): Models for adaptive structures using shape memory actuators. - Proc. 14-th Int. Symp. MTNS 2000, Perpignan, France, (on CD-ROM).
- [7] Hoffmann K.-H. and Żochowski A. (1992): Existence of solutions to some nonlinear thermoelastic system with viscosity. - Math. Meth. Appl. Sci., Vol. 15, No.3, pp. 187-204.
- [8] Kondrat’ev V.A. (1967): Boundary value problems for elliptic equations in domains with conical or angular points. - Trudy Moskov. Mat. Obshch., Vol. 16, pp. 209-292, (in Russian); English transl.: Trans. Moscow Math. Soc., 1967, Vol. 16, pp. 227-313.
- [9] Kondrat’ev V.A. and Oleinik O.A. (1983): Boundary value problems for partial differential equations in nonsmooth domains. - Uspekhi Mat. Nauk., Vol. 38, No. 2, pp. 3-76, (in Russian).
- [10] Kozlov V.A., Maz’ya V.G. and Rossmann J. (1997): Elliptic Boundary Value Problems in Domains with Point Singularities. - Providence, R. I.: Amer. Math. Soc.
- [11] Kozlov V.A. and Maz’ya V.G. (1999): Comparison principles for nonlinear operator differential equations in Banach spaces. - Amer. Math. Soc. Transl., Vol. 189, No. 2, pp. 149-157.
- [12] Lions J.L. and Magenes E. (1972): Non-Homogeneous Boundary Value Problems and Applications. - Berlin: Springer Verlag.
- [13] Nazarov S.A. and Plamenevsky B.A. (1994): Elliptic Problems in Domains with Piecewise Smooth Boundaries. - Berlin: Walter de Gruyter.
- [14] Pawłow I. and Zochowski A. (2000): ˙ Existence and uniqueness of solutions for a three-dimensional thermoelastic system. - Working Paper, Systems Research Institute, Polish Academy of Sciences.
- [15] Sprekels J. and Zheng S. (1989): Global solutions to the equations of a Ginzburg-Landau theory for structural phase transitions in shape memory alloys. - Physica D., Vol. 39, No.1, pp. 59-76.
- [16] Zheng S. (1995): Nonlinear Parabolic Equations and Coupled Hyperbolic-Parabolic Systems. - Burnt Mill (UK): Longman House.
- [17] Żochowski A. (1992): Mathematical Problems in Shape Optimization and Shape Memory Materials. - Frankfurt/Main: Verlag Peter Lang.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0001-0042