PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Context-Based Approach to Linguistic Hedges

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a framework of L-fuzzy modifiers for L being a complete lattice. They are used to model linguistic hedges that act on linguistic terms represented by L-fuzzy sets. In the modelling process the context is taken into account by means of L-fuzzy relations, endowing the L-fuzzy modifiers with a clear inherent semantics. To our knowledge, these L-fuzzy modifiers are the first ones proposed that are suitable to perform this representation task for a lattice L different from the unit interval. In the latter case they undoubtedly outperform the traditional representations, such as powering and shifting hedges, from the semantical point of view.
Rocznik
Strony
371--382
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
autor
  • Fuzziness and Uncertainty Modelling Research Unit, Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium
autor
  • Fuzziness and Uncertainty Modelling Research Unit, Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium
Bibliografia
  • [1] Bodenhofer U. (2002): A note on approximate equality versus the Poincaré paradox. - Fuzzy Sets Syst., (to appear).
  • [2] De Baets B. and Mesiar R. (1999): Triangular norms on product lattices. - Fuzzy Sets Syst., Vol. 104, No. 1, pp. 61-75.
  • [3] De Cock M. and Kerre E. E. (2000): A new class of fuzzy modifiers. - Proc. ISMVL2000 (30th IEEE Int. Symp. Multiple-Valued Logic), Computer Society, Cortland (USA), pp. 121-126.
  • [4] De Cock M. and Kerre E. E. (2001): Approximate equality is no fuzzy equality. - Proc. EUSFLAT2001 (Int. Conf. European Society for Fuzzy Logic and Technology), Leicester (UK), pp. 369-371.
  • [5] De Cock M. and Kerre E. E. (2002a): Fuzzy modifiers based on fuzzy relations. - Inf. Sci., (to appear).
  • [6] De Cock M. and Kerre E. E. (2002b): On (un)suitable fuzzy relations to model approximate equality. - Fuzzy Sets Syst., (to appear).
  • [7] De Cock M., Nachtegael M. and Kerre E. E. (2000): Images under Fuzzy relations: A Master-Key to Fuzzy Applications, In: Intelligent Techniques and Soft Computing in Nuclear Science and Engineering (D. Ruan, H. A. Abderrahim, P. D’hondt and E. E. Kerre, Eds.) - Singapore: World Scientific.
  • [8] De Cock M., Žabokrtský Z. and Kerre E. E. (2001): Representing linguistic hedges by L-fuzzy modifiers. - Proc. CIMCA’01 (Int. Conf. Computational Intelligence for Modelling Control and Automation), Las Vegas (USA), pp. 64-72 (CD-ROM).
  • [9] De Cooman G. and Kerre E. E. (1994): Order norms on bounded partially ordered sets. - J. Fuzzy Math., Vol. 2, No. 2, pp. 281-310.
  • [10] du Bois N., De Cock M., Kerre E. E. and Babuška R. (2002): A fuzzy set theoretical approach to the automatic generation of absenteeism analyses in natural language. - Proc. IPMU2002 (9th Int. Conf. Information Processing and Management of Uncertainty in Knowledge-Based Systems), Annecy (France), Vol. III, pp. 1961-1968.
  • [11] Drossos C. and Navara M. (1997): Matrix composition of tnorms, In: Enriched Lattice Structures for Many-Valued and Fuzzy Logics, Proceedings of 18th Linz Seminar on Fuzzy Set Theory (E.P. Klement and S. Gottwald, Eds.). - Luiz, Johannes Kepler Univ., pp. 95-100.
  • [12] Goguen J. (1967): L-fuzzy sets. - J. Math. Anal. Applic., Vol. 18, No. 1, pp. 145-174.
  • [13] Hellendoorn H. (1990): Reasoning with Fuzzy Logic. - Ph. D. Thesis, T.U. Delft (the Netherlands).
  • [14] Kerre E. E. (Ed.) (1993): Introduction to the basic principles of fuzzy set theory and some of its applications. - Communication and Cognition, Gent.
  • [15] Kerre E. E. and De Cock M. (1999): Linguistic modifiers: An overview, In: Fuzzy Logic and Soft Computing (Chen G., Ying M. and Cai K.-Y., Eds.). - Dordrecht: Kluwer Academic Publishers, pp. 69-85.
  • [16] Klawonn F. (2002): Should fuzzy equality and similarity satisfy transitivity? Comments on the paper by M. De Cock and E. Kerre. - Fuzzy Sets Syst., (to appear).
  • [17] Lakoff G. (1973): Hedges: A study in meaning criteria and the logic of fuzzy concepts. - J. Phil. Logic, Vol. 2, No. 4, pp. 458-508.
  • [18] Novák V. and Perfilieva I. (1999): Evaluating linguistic expressions and functional fuzzy theories in fuzzy logic, In: Computing with Words in Information/Intelligent Systems 1: Foundations (Zadeh L. A. and Kacprzyck J., Eds.). - Heidelberg: Springer-Verlag, pp. 383-406.
  • [19] Novák V., Perfilieva I. and Močkoř J. (1999): Mathematical Principles of Fuzzy Logic. - Boston: Kluwer.
  • [20] Orlowska E. and Radzikowska A. (2001): Information relations and operators based on double residuated lattices. - Proc. RELMICS’6 (6-th Int. Workshop Relational Methods in Computer Science), Aisterwijk (the Netherlands), pp. 169-186.
  • [21] Poincaré H. (1904): La Valeur de la Science. - Paris: Flammarion.
  • [22] Schweizer B. and Sklar A. (1961): Associative functions and statistical triangle inequalities. - Publ. Math. Debrecen, Vol. 8, pp. 169-186.
  • [23] Wei Q., Chen G. and Wets G. (2000): Modifying fuzzy association rules with linguistic hedges. - 19th Int. Meeting of the North American Fuzzy Information Processing Society, Atlanta (USA), pp. 397-401.
  • [24] Xu Y., Ruan D. and Liu J. (1999): Uncertainty automated reasoning in intelligent learning of soft knowledge. - Proc. ICST Workshop Information and Communication Technology for Teaching and Training, Gent (Belgium), pp. 29-45.
  • [25] Xu Y., Ruan D. and Liu J. (2000): Approximate reasoning based on lattice-valued propositional logic Lvpl, In: Fuzzy IFTHEN Rules in Computational Intelligence, Theory and Applications (Ruan D. and Kerre E. E., Eds.) - Boston: Kluwer Academic Publishers, pp. 81-105.
  • [26] Zadeh L. A. (1965): Fuzzy sets. - Inf. Contr., Vol. 8, No. 3, pp. 338-353.
  • [27] Zadeh L. A. (1972): A fuzzy-set-theoretic interpretation of linguistic hedges. - J. Cybern., Vol. 2, No. 3, pp. 4-34.
  • [28] Zadeh L. A. (1975): The concept of a linguistic variable and its application to approximate reasoning I, II, III. - Inf. Sci., Vol. 8, No. 3, pp. 199-249, No. 4, pp. 301-357; Vol. 9, No. 1, pp. 43-80.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0001-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.