Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the solution of a finite element approximation of a linear obstacle plate problem is investigated. A simple version of an interior point method and a block pivoting algorithm have been proposed for the solution of this problem. Special purpose implementations of these procedures are included and have been used in the solution of a set of test problems. The results of these experiences indicate that these procedures are quite efficient to deal with these instances and compare favourably with the path-following PATH and the active-set MINOS codes of the commercial GAMS collection
Rocznik
Tom
Strony
27--40
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Departamento de Matemática, Escola Superior de Tecnologia de Tomar, 2300-313 Tomar, Portugal
autor
- Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal
autor
- Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal
Bibliografia
- [1] Bertsekas D. (1995): Nonlinear Programming. - Massachusetts: Athena Scientific.
- [2] Brook A., Kendrich D. and Meeraus A. (1992): GAMS, User’s Guide, Release 2.25. - Massachusetts: Scientific Press.
- [3] Ciarlet P.G. (1991): Basic Error Estimates for Elliptic Problems, In: Handbook of Numerical Analysis, Vol. II (P.G. Ciarlet and J.L. Lions, Eds). - Amsterdam: North-Holland.
- [4] Dirkse S.P. and Ferris M.C. (1995): The PATH solver: A nonmonotone stabilization scheme for mixed complementarity problems. - Optim. Meth. Softw., Vol. 5, No. 2, pp. 123-156.
- [5] Duff I., Erisman A. and Reid J. (1986): Direct Methods for Sparse Matrices. - Oxford: Claredon Press.
- [6] Fernandes L., Júdice J. and Patrício J. (1996): An investigation of interior-point and block pivoting algorithms for large scale symmetric monotone linear complementarity problems. - Comp. Optim. Applics., Vol. 5, No. 1, pp. 49-77.
- [7] George J.A. and Liu J.W. (1981): Computer Solution of Large Sparse Positive Definite Systems. - Englewood Cliffs, NJ.: Prentice-Hall.
- [8] Haslinger J., Hlavácek I. and Nečas J. (1996): Numerical Methods for Unilateral Problems in Solid Mechanics, In: Handbook of Numerical Analysis, Vol. IV (P.G. Ciarlet and J.L. Lions, Eds). - Amsterdam: North-Holland.
- [9] Júdice J. and Pires F.M. (1994): A block principal pivoting algorithm for large-scale strictly monotone linear complementarity problems. - Comp. Oper. Res., Vol. 21, No. 5, pp. 587-596.
- [10] Kikuchi N. and Oden J.T. (1988): Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Elements. - Philadelphia: SIAM.
- [11] Nocedal J. and Wright S. (1999): Numerical Optimization. - New York: Springer-Verlag.
- [12] Ohtake K., Oden J.T. and Kikuchi N. (1980): Analysis of certain unilateral problems in von Karman plate theory by a penalty method, Part 2. - Comp. Meth. Appl. Mech. Eng., Vol. 24, No. 3, pp. 317-337.
- [13] Ortega J. (1988): Introduction to Parallel and Vector Solution of Linear Systems. - New York: Plenum Press.
- [14] Portugal L., Resende M., Veiga G. and Júdice J. (2000): A truncated primal-infeasible dual-feasible interior-point network flow method. - Networks, Vol. 35, No. 2, pp. 91-108.
- [15] Simantiraki E. and Shanno D. (1995): An infeasible interiorpoint method for linear complementarity problems. - Tech. Rep. RR7-95, New Jersey.
- [16] Wright S.J. (1997): Primal-Dual Interior-Point Methods. - Philadelphia SIAM.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0001-0003